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Abstract:  
Introduction:  

A non-contrast CT head scan (NCCTH) is the most common cross-sectional imaging 

investigation requested in the Emergency Department (ED). Advances in computer vision have 

led to development of several Artificial Intelligence (AI) tools to detect abnormalities on NCCTH. 

These tools are intended to provide clinical decision support for clinicians, rather than stand-

alone diagnostic devices. However, validation studies mostly compare AI performance against 

radiologists, and there is relative paucity of evidence on the impact of AI assistance on other 

healthcare staff who review NCCTH in their daily clinical practice.  

Methods and analysis: 

A retrospective dataset of 150 NCCTH will be compiled, to include 60 control cases and 90 

cases with intracranial haemorrhage, hypodensities suggestive of infarct, midline shift, mass 

effect, or skull fracture. The intracranial haemorrhage cases will be sub-classified into 

extradural, subdural, subarachnoid, intraparenchymal, and intraventricular.  

30 readers will be recruited across four NHS trusts including 10 general radiologists, 15 

Emergency Medicine clinicians, and five CT radiographers of varying experience. Readers will 

interpret each scan first without, then with, the assistance of the qER EU 2.0 AI tool, with an 

intervening 2-week washout period. Using a panel of neuroradiologists as ground truth, the 

stand-alone performance of qER will be assessed, and its impact on the readers’ performance 

will be analysed as change in accuracy (area under the curve), median review time per scan, 

and self-reported diagnostic confidence. Subgroup analyses will be performed by reader 

professional group, reader seniority, pathological finding, and neuroradiologist-rated difficulty. 

Ethics and dissemination: 

The study has been approved by the UK Healthcare Research Authority (IRAS 310995, 

approved 13/12/2022). The use of anonymised retrospective NCCTH has been authorised by 

Oxford University Hospitals. The results will be presented at relevant conferences and published 

in a peer-reviewed journal. 
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Article Summary 

Strengths and limitations of this study 

● This study will evaluate the impact of the AI tool on diagnostic accuracy, speed, and 

confidence, in its most realistic use-case, as an assistant to healthcare professionals 

rather than in isolation. 

● It will be the first UK-based multicentre validation of an AI for NCCTH trained on a large 

dataset (300,000 head CTs). 

● It includes non-radiologists (EM clinicians and radiographers) among the healthcare 

professionals that may benefit from AI assistance. 

● The prevalence of pathologies in the selected scans will be enriched in order to achieve 

statistical power to detect the impact of AI assistance. Although necessary to facilitate an 

important evaluation of diagnostic accuracy, this will limit the immediate generalisability 

of results to real-life clinical performance. 

(Word count: 2408 words) 

  



  

 

  

 

Main text 

Introduction:  
Diagnostic imaging plays a critical role in the timely and appropriate management of Emergency 

Department (ED) patients [1,2]. Emergency Medicine (EM) clinicians routinely interpret and act 

upon their findings for plain radiography, but are generally dependent on radiologists for more 

complex modalities such as Computed Tomography (CT). Reporting turnaround time already 

has a significant impact on ED workflow [3], and demand will continue to increase relative to the 

radiologist workforce [4,5]. The advent of artificial intelligence (AI)-assisted image interpretation 

offers a potential way to mitigate the impact of this shortfall, by improving radiologist reporting 

efficiency in terms of reporting time or worklist prioritisation, or by elevating the interpretation 

accuracy of EM clinicians and radiographers to support diagnostic and treatment decision 

making prior to the availability of a full radiology report.  

Non-contrast CT head (NCCTH) is the most common cross-sectional imaging investigation 

performed in ED, comprising up to half of ED CT scans [6], and performed in up to 9% of all ED 

encounters [7]. Recently developed AI tools are capable of identifying critical pathologies, 

mapping their location for clinician review, and flagging abnormal scans for urgent attention [8–

10]. These tools have demonstrated sensitivity and specificity comparable to neuroradiologists 

for important findings such as intracranial haemorrhage, cerebral infarct, and skull fracture 

[8,11–14], and can reduce turnaround times for scans with urgent findings [9,14,15].  

Most AI solutions are currently designed as decision support tools rather than stand-alone 

diagnostic devices, and in the foreseeable future clinicians are likely to retain responsibility for 

interpretations, diagnosis and subsequent treatment decisions [16,17]. Despite this, most 

published work evaluates the stand-alone performance of AI tools and compares them to that of 

neuroradiologists. Few studies have directly evaluated the impact of AI assistance in improving 

the accuracy of general radiologists in NCCTH interpretation [12,18,19], and fewer have 

evaluated its impact on reporter speed and confidence [18]. Other professional groups who may 

use AI include EM clinicians, who commonly review CT scans prior to radiology reports 

becoming available, in order to expedite patient management [20,21]. To our knowledge, only 

one previous study has evaluated the impact of AI assistance with other groups of healthcare 

professionals who regularly review or act upon NCCTH interpretations, such as EM clinicians 

and radiographers [22].  

Although some AI tools been validated in the UK population, most have been in a single-centre 

setting with relatively small datasets [23–25]. The AI tools which have been developed using the 

largest datasets (above 100,000 scans) have originated from China and India [11,12] and have 

not been validated in the UK. The geographic setting is significant because early AI models’ 

performance degraded sharply when tested on data from different populations, even from 

different hospitals within the same city, due to differences in patient characteristics, prevalence 



  

 

  

 

of abnormalities, and imaging hardware [17,26,27]. More advanced models with larger and 

more diverse datasets show improved performance in this regard [11,12]. 

qER 2.0 EU is an FDA cleared and CE marked AI tool for interpretation of NCCTH, which was 
developed using 300,000 retrospectively collected scans from 31 imaging centres in India and 
one of the largest teleradiology centres in the US, including scans obtained from both in-hospital 
and outpatient radiology settings. It can detect, classify, and localise intracranial haemorrhage, 
hypodensities suggestive of infarct, mass effect, midline shift, atrophy, and skull fractures in 
NCCTH [11]. If any of the target abnormalities is detected by the software, the tool provides the 
user with a single summary listing all the target abnormalities found by qER on the CT, followed 
by all slices in the scan with the overlay highlighting the location of the abnormalities (Figure 1). 
Alternatively, if none of the target abnormalities are detected, the output will indicate that the 
software has analysed the image and identified no target abnormalities.  

qER is intended to support certified radiologists and/or licensed medical practitioners for clinical 
decision making. It is a support tool which, when used with original scans, may assist the 
clinician to improve efficiency, accuracy, and turnaround time in reading NCCTH. As yet, its 
potential impact on the diagnostic accuracy of radiologists, radiographers and EM clinicians has 
not been fully evaluated.  

To our knowledge, the current study will be the first UK-based multicentre validation of an AI for 
NCCTH trained on a large dataset. It will assess the impact of AI assistance on clinician 
accuracy, and furthermore will include its impact on EM clinicians and radiographers, both of 
which are important areas with a paucity of published research.  

Study aims 

1. To determine the improvement in NCCTH image interpretation accuracy of general 

radiologists, EM clinicians and radiographers in detecting critical abnormalities (any one 

or more of intracranial haemorrhage, midline shift, mass effect, skull fracture, or 

hypodensity suggestive of infarct) with the assistance of the qER AI tool (Primary). 

2. To determine, in the UK ED population, the stand-alone accuracy of qER at detecting 

intracranial haemorrhage, hypodensity suggestive of infarct, midline shift, mass effect, 

and skull fractures (Secondary). 

3. To measure the time taken by the above clinicians to evaluate scan images, and their 

diagnostic confidence, with and without the AI tool (Secondary). 

4. To explore which imaging factors influence clinicians’ reporting accuracy and efficiency, 

and algorithm performance, e.g. category of abnormality, presence of multiple 

abnormalities, clinician seniority and professional group (Secondary).  

Methods and analysis:  

Study design 

The study will employ a fully-crossed paired multi-reader multi-case (MRMC) design.  



  

 

  

 

Case selection: 

 

150 NCCTH of ED patients aged 18 years or above will be retrospectively identified by the 

clinical and PACS / IT team by searching the Radiology Information System at Oxford University 

Hospitals NHS Foundation Trust (Figure 2). The case mix will include 60 control scans and 90 

abnormal scans, including a minimum of 10 scans containing each of the following 9 critical 

abnormalities (for definitions, see Appendix): 

1. Extradural haemorrhage 

2. Subdural haemorrhage 

3. Subarachnoid haemorrhage 

4. Intraparenchymal haemorrhage 

5. Intraventricular haemorrhage 

6. Hypodensity suggestive of infarct 

7. Midline shift 

8. Mass effect 

9. Skull fractures 

For the purposes of case selection, the existing clinical radiology reports will be used to 

determine whether a given scan contains an abnormality of interest. Consecutive scans will be 

reviewed and all scans fitting the inclusion and exclusion criteria will be included until the case 

number requirements have been met. A subset of images may demonstrate multiple of the 

above abnormalities. The control cases may include scans with other abnormalities than the 9 

of interest listed above, as well as normal scans.  

 

Inclusion criteria for cases:  

● Individuals undergoing NCCTH in the ED. 

● Age ≥ 18 years 

● Non-contrast axial CT scan series with consistently spaced axial slices. 

● Soft reconstruction kernel covering the complete brain.  

● Maximum slice thickness of 6mm 

 

 

Exclusion criteria for cases will consist of the following features which are known to cause 

inaccurate outputs from the qER AI: 

● Scans with obvious postoperative defects, or from patients who previously underwent 

brain surgery 

● Scans with artifacts such as burr holes, shunts, or clips 

● Scans containing metal artifacts 

Setting:  

Readers will be recruited from the following four hospital Trusts:  

 

● Guy’s & St Thomas NHS Foundation Trust 

● Northumbria Healthcare NHS Foundation Trust   



  

 

  

 

● NHS Greater Glasgow and Clyde 

● Oxford University Hospitals NHS Foundation Trust 

Participants:    

30 volunteer participant readers will be selected from the following groups:  

● Emergency Medicine Consultants and Registrars (5 Consultant, 5 Registrar (ST3-6), 5 

junior (F1-ST2) 

● General Radiologist Consultants and Registrars (5 Consultant, 5 Registrar (ST3-6)) 

● 5 CT Radiographers 

 

Inclusion criteria: 

● Radiologists/Radiographers/EM clinicians who review NCCTH as part of their clinical 

practice 

 

Exclusion criteria: 

● Neuroradiologists 

● (Non-radiologist groups) Clinicians with previous formal postgraduate CT reporting 

training 

● (Emergency Medicine group) Clinicians with previous career in radiology / neurosurgery 

to registrar level 

 

CT interpretation 

All 30 readers will review all 150 cases, in each of two study phases (Figure 3). For each scan, 

the readers will provide their opinion on whether any critical abnormalities are present, and if so, 

on the presence or absence of each of the 9 abnormalities listed above. They will also be asked 

to provide a confidence for each of their diagnoses on a 10-point quasi-continuous scale (QCS) 

(Figure 4). The time taken for each scan (not including confidence QCS) will be automatically 

recorded. The order of the cases will be randomised for each reader at each phase, and 

readers will be unaware of the number of cases vs controls. 

 

Phase 1: all readers review all scans, blinded to the ground truth and without AI assistance. 

 

Washout period: 2 weeks, to mitigate recall bias.  

 

Phase 2: all readers review all scans again, in a randomised order, remaining blinded to the 

ground truth, but with access to the results from the qER tool. (Figure 3). In addition to the 

original scan, the qER output will include a notification to suggest the presence/absence of a 

target abnormality and segmentation of the abnormal areas identified. If readers disagree with 

the algorithm output, they will be asked to state their reasons using a free text box. (Time taken 

to do this will not be included for the purposes of the speed-of-interpretation analysis).  

 



  

 

  

 

The reads will be performed using a secure web-based DICOM viewer (www.raiqc.com). Prior 

to commencing each phase of the study, the readers will be asked to review 5 practice cases 

(not part of the 150 case dataset) to familiarise themselves with the use of the study platform 

and the output of the qER tool.  

 

Ground truthing 

Two Consultant neuroradiologists will independently review the images to establish the ‘ground 

truth’ findings on the CT scans which will be used as the reference standard. In the case of 

disagreement, a third senior neuroradiologist’s opinion will be sought for arbitration. A difficulty 

score will be assigned to each scan by the two ground truthers using a 5-point Likert scale 

(Figure 4), and where there is disagreement the mean score will be taken. 

 

Outcome measures 

The primary outcome measure will be the difference in Area Under the Receiver Operating 

Characteristic Curve (AUC) of readers in classifying a scan as critical or non-critical, with vs 

without AI assistance. 

Secondary outcome measures: the differences in reader sensitivity and specificity, with vs 

without AI assistance, will also be derived from the reader classifications. The stand-alone 

diagnostic performance of qER AI will be evaluated by estimating sensitivity and specificity of 

qER in classifying a scan as critical vs non-critical and by AUC, sensitivity and specificity of qER 

for detecting each target abnormalities. The difference in reader speed will be evaluated as the 

median review time per scan with vs without AI assistance. 

 

 

Data de-identification and management 

Scans selected for the study will be anonymised in accordance with Oxford University Hospitals 

NHS Foundation Trust information governance protocol using the Insignia Insight 

Anonymisation tool and uploaded to the secure image viewing platform (www.raiqc.com). 

Access to the scans will be controlled via the study platform using separate user accounts for 

each reader. The anonymised images will be sent securely to Qure servers, where the AI 

analysis will run, and its outputs will be transferred back to RAIQC (Figure 5). 

 

All study data will be entered into a password-protected and secure database. Individual reader 

accuracy scores will be anonymised, and the study team will not have access to the identifying 

link between the readers’ personal details and the data. Data about the readers’ seniority level 

and professional group will be retained to allow group comparisons. 

 

 

http://www.raiqc.com/


  

 

  

 

Sample size and power calculation 

A sample of 30 readers and minimum 135 scans (82 with presence of critical findings, 53 with 

no critical findings) will have minimum 80% power at a type I error rate of 5% to detect a 

minimum difference in readers’ AUC of 5%, assuming a large inter-reader and intra-reader 

variability of 0.3 and 0.05 respectively, a 0.35 conservative correlation between readers, and 

anticipated average readers’ AUC of 0.75 [28]. Since we made few assumptions, a higher 

sample size of 150 NCCTH (90 with critical findings, 60 without any critical findings) will be used 

for the study.  

Statistical analyses 

The difference in AUC of readers with and without AI will be tested based on the Obuchowski-

Rockette model for MRMC analysis which will model the data using a 2-way mixed effects 

ANOVA model treating readers and cases (images) as random effects and effect of AI as a 

fixed effect [29] with recommended adjustment to degrees of freedom by Hillis et. al. [30]. 

Sensitivity and specificity will be analysed as part of this model. The main analysis will be 

performed as a single pool including all groups and sites. Subgroup analyses will be performed 

for the following: 

● Professional group (radiologist vs EM clinician vs radiographer) 

● Senior vs junior 

● Pathological finding 

● Difficulty of image 

 

The median review time per scan with vs without AI will be compared using a non-parametric 

Wilcoxon sign-rank test.  

 

The stand-alone performance of qER algorithm will be compared with the ground truth 

generated by the neuroradiologists. The continuous probability score from the algorithm will be 

utilised for the AUC analyses, while binary classification results will be utilised for evaluation of 

sensitivity, specificity, positive predictive value, and negative predictive value. 

 

  

Ethics and dissemination:  
The study has been approved by the UK Health Research Authority (IRAS number 310995, 

approved 13/12/2022). The use of anonymised retrospective CT scans has been authorised by 

the Caldicott Guardian and information governance team at Oxford University Hospitals NHS 

Foundation Trust. Readers will provide written informed consent and will be able to withdraw at 

any time.  

The study is registered at Clinicaltrials.gov (NCT06018545), and the ISRCTN registry (approval 

pending). The results of the study will be presented at relevant conferences and published in 



  

 

  

 

peer-reviewed journals. The detailed study protocol will be freely available upon request to the 

corresponding author. Further dissemination strategy will be strongly guided by our PPIE 

activities. This will be based on co-productions between patient partners and academics and will 

involve media pieces (mainstream and social media) as well as communication through charity 

partners. 

 

Authors’ contributions: 

All authors contributed to the writing of the protocol and reviewed the manuscript, with AN and 

SA leading the overall design. HF, AN, DR, and SA wrote the manuscript. KB and AR are the 

ground-truthers. 
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study and its aims, influenced design and data management, and dissemination strategies. One 
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Figure legends 

Figure 1: qER presents a summary of all abnormalities identified and the slice images 
containing those abnormalities with a localisation overlay.  

Figure 2: Case selection flow diagram. 

 

Figure 3: Reader study flowchart. 

 

Figure 4: Sample reader questions and responses. A): readers will be asked to state their 

confidence in each positive diagnosis they make, on a quasi-continuous scale from 1-10. B) 

Ground truthers will be asked to rate the difficulty of each diagnosis on a Likert scale from 1-5.  

 

Figure 5: data flow diagram.  

 

 

  



  

 

  

 

Appendix: Definitions of Critical Abnormalities 

 Intracranial Haemorrhage ICH (including subtype) Any type of bleeding within the brain 

and cranial vault. It encompasses five broad types of haemorrhage: epidural 

haemorrhage, subdural haemorrhage, subarachnoid haemorrhage, intraventricular 

haemorrhage, and intraparenchymal haemorrhage.  

 Midline Shift (MS): A horizontal shift of the brain past its centre line, a subset of Mass 

Effect  

 Mass Effect (ME): A visible compression or displacement of adjacent structures of the 

brain parenchyma, sulci or ventricles and can cause midline shift as results of an 

underlying pathology.  

 Cranial Fracture: One or more breaks in the cranial bone. Often seen as lucencies 

and/or as discontinuities in the bone  

 Hypodensity (suggestive of infarct): An area of necrosis in the brain tissue, resulting from 

obstruction of the local circulation by a thrombus or embolus. Early features of an infarct 

on CT scan include loss of grey-white matter differentiation, and cortical hypodensity 

with associated parenchymal swelling. This can be either an acute or a chronic infarct.  

 Cerebral Atrophy: Loss of neurons and its connections due to conditions such as stroke, 

neurodegenerative diseases. Seen as brain parenchymal volume loss on a head CT 

scan. 
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