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Objectives 

We have previously conducted a controlled before-and-after trial (Maputo Sanitation trial) to 

evaluate the impact of an onsite urban sanitation intervention on the prevalence of bacterial and 

protozoan infection (primary outcome), soil-transmitted helminth (STH) re-infection, and seven-

day period prevalence of diarrhea among children living in informal neighborhoods of Maputo 

city, Mozambique (clinicaltrials.gov: NCT02362932).1–3 We will conduct a cross-sectional 

survey of Maputo Sanitation (MapSan) trial compounds (clusters of households sharing 

sanitation and outdoor living space) at least 60-months post-intervention to evaluate the impact 

of the sanitation intervention on child health outcomes, specifically in children born after 

implementation of the sanitation intervention. 

Hypotheses 

H1. The risk of stool-based enteric pathogen detection among children 29 days – 60 months old 

is reduced for children born into households that previously received the sanitation 

intervention. 

H2. Children born into households that previously received the sanitation intervention experience 

delayed exposure to enteric pathogens relative to comparably aged children from non-

intervention households, reflected in a greater reduction in the risk of enteric pathogen 

detection among younger age groups and attenuated reduction in risk among older children. 

Study Design 

We will revisit both the intervention and control compounds from the MapSan trial to cross-

sectionally assess enteric pathogen detection, growth, and seven-day period prevalence of 

diarrhea in the children born into the study compounds after the sanitation intervention was 

delivered in 2015-2016. 
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Inclusion and Exclusion Criteria 

We will attempt to enroll all eligible children in each compound that previously participated in 

the MapSan trial, including any eligible children from the same household. Participant inclusion 

criteria include: 

1. Child aged 29 days – 60 months old 

2. Born and residing in a MapSan trial intervention or control compound; in intervention 

compounds, child must have been born following the delivery of the sanitation 

intervention 

3. Has continuously resided in the MapSan trial compound for the preceding 6 months 

4. Has a parent or guardian who is able to understand and complete the written informed 

consent process and allow their child to participate 

 Children will be excluded if they have any caregiver-indicated medical condition or disability 

that precludes participation in the study. 

We anticipate some of the control compounds may have independently upgraded their 

sanitation facilities to conditions comparable to the intervention. Children living in control 

compounds with independently upgraded latrines will still be enrolled, but will be excluded from 

the main analyses of the intervention effects. Instead, these children will be included in a set of 

secondary analyses using the full cohort to explore the impacts of independent upgrades on 

estimates of the intervention effect when considered either as control or intervention sites. 

Control compounds with sanitation facilities observed to possess cleanable, intact hardscape 

slabs; pour-flush or water-sealed toilets; a functional ventilation pipe; and a permanent 

superstructure with sturdy walls and a secure door that ensure privacy during use will be 

considered as having independently upgraded to conditions comparable to the intervention. We 
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will also assess the current conditions of intervention facilities, but will not exclude or otherwise 

adjust for either upgraded or degraded sanitation facilities in intervention compounds in order to 

evaluate the long-term impacts of the intervention following extended use. 

Data Analysis 

Outcomes 

Outcome Ascertainment 

Stool-based detection of enteric pathogens will be performed for children who aged 29 days – 60 

months who were born into and continue to reside in MapSan study compounds.4 Reverse-

transcription quantitative polymerase chain reaction (RT-qPCR) will be conducted by custom 

TaqMan Array Card (TAC) to simultaneously quantify genetic targets corresponding to 13 

bacterial pathogens (Aeromonas spp.; Campylobacter jejuni/coli; Escherichia coli O157; 

Clostridioides difficile; enteroaggregative E. coli (EAEC); Shiga toxin-producing E. coli 

(STEC); enteropathogenic E. coli (EPEC); enterotoxigenic E. coli (ETEC); enteroinvasive E. coli 

(EIEC)/Shigella spp.; Helicobacter pylori; Plesiomonas shigelloides; Salmonella enterica; 

Vibrio cholerae), 4 protozoan parasites (Cryptosporidium spp.; Cyclospora cayetanensis; 

Entamoeba histolytica; Giardia spp.), 5 soil transmitted helminths (Ascaris lumbricoides; 

Ancylostoma duodenale; Necator americanus; Strongyloides stercolaris; Trichuris trichiura), 

and 5 enteric viruses (adenovirus 40/41; astrovirus; norovirus GI/GII; rotavirus, sapovirus). 

Additionally, child weight and recumbent length (child age < 24 months) or standing height (24 

– 60 months) will be assessed according to standard World Health Organization (WHO) 

protocols and transformed to age-adjusted z-scores using WHO reference populations to obtain 

height-for-age (HAZ), weight-for-age (WAZ), and weight-for-height (WHZ) z-scores, with 

stunting defined as HAZ < -2, underweight as WAZ < -2, and wasting as WHZ < -2.5,6 Caregiver 
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surveys will be administered to ascertain child diarrheal disease, defined as the passage of three 

or more loose or watery stools in a 24-hour period, or any bloody stool, in the past 7 days.7–9 

 

Primary Outcome 

The primary outcome is the weighted-mean enteric pathogen prevalence across 13 bacterial 

pathogens, 4 protozoan parasites, and 5 soil transmitted helminths assessed in child stool using 

the custom TAC. As in the original MapSan study, we exclude enteric viruses from the primary 

outcome due to the potential for person-to-person transmission, which is unlikely to be impacted 

by the intervention.1,3 Children living in control compounds that have independently upgraded 

their sanitation facilities will be excluded from the primary outcome analysis. Stool-based 

detection of all 22 primary outcome enteric pathogens will be analyzed simultaneously under an 

individual participant data (IPD) random effects meta-analysis framework and the group mean of 

the pathogen-varying intervention effects on enteric pathogen prevalence will be assessed as the 

primary outcome. 

 

Secondary Outcomes 

1. The individual prevalence of each of the 27 pathogens assessed in child stool (including 

the 5 enteric viruses) will be analyzed simultaneously under an IPD random effects meta-

analysis framework. The pathogen-specific intervention effects on prevalence of each 

pathogen will be assessed as secondary outcomes. 

2. The class-level weighted-mean enteric pathogen prevalence will be analyzed separately 

for each of the four pathogen classes represented on the TAC (bacteria, protozoa, soil 

transmitted helminths, and viruses). Separate IPD random effects meta-analysis models 
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will be fit for each class, with the 13 bacteria to analyzed together to estimate the group 

mean of the bacterial pathogen-varying intervention effects on bacterial pathogen 

prevalence. Separate models will similarly be fit to the 4 protozoa, the 5 STH, and the 5 

enteric viruses to estimate the pooled intervention effects on protozoa prevalence, STH 

prevalence, and virus prevalence, respectively, as secondary outcomes. 

3. The weighted-mean gene copy density across the 22 primary outcome enteric pathogens 

(excluding enteric viruses) will assessed as a secondary outcome. Gene copy densities 

will be standard deviation-scaled for each pathogen and analyzed simultaneously using 

an IPD random effects meta-analysis framework with model-based censoring to create a 

zero class to represent non-detects. The group mean of the pathogen-varying intervention 

effects on gene copy density will be assessed as a secondary outcome. 

4. The individual scaled gene copy density of each of the 27 pathogens assessed in child 

stool (including the 5 enteric viruses) will be analyzed simultaneously under an IPD 

random effects meta-analysis framework and censoring to account for non-detects. The 

pathogen-specific intervention effects on gene copy density will be assessed as secondary 

outcomes. 

5. Child HAZ, WAZ, WHZ will each be analyzed separately. The intervention effects on 

the age-adjusted z-score of each anthropometry measure will be assessed as secondary 

outcomes. 

6. Prevalence of stunting, underweight, and wasting and the 7-day period-prevalence of 

caregiver-reported diarrhea will each be analyzed separately. The individual intervention 

effects on stunting, underweight, and wasting prevalence and diarrhea period-prevalence 

will be assessed as secondary outcomes. 
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Effect Measures 

For binary outcomes (e.g., pathogen detection, diarrhea), the conditional prevalence odds ratio 

(POR) for children living in intervention compounds relative to children in control compounds 

will be estimated as the measure of effect. Marginal prevalence differences (PD) between 

children in intervention and control compounds will also be estimated from the posterior 

predictive distribution at representative values of other model covariates.10 Mean differences will 

be estimated as the measure of effect for continuous outcomes (e.g., gene copy density, HAZ). 

 

Estimation Strategy 

Enteric Pathogen Outcomes 

We will concurrently assess 27 individual enteric pathogens in each child stool sample, but are 

interested in estimating the generalized effect of the sanitation intervention on enteric pathogen 

detection as a proxy for enteric infections—that is, the expected intervention effect on a generic 

enteric pathogen. We adopt an IPD random effects meta-analysis framework to estimate the 

weighted-average intervention effect across all the pathogens, in essence treating each pathogen 

as a separate study of the intervention effect on enteric pathogen detection (See Appendix A. 

Illustrative Model Specifications).11–13 The intercept, intervention effect slope, and the slopes of 

other covariates are all allowed to vary by pathogen (the "random effects"). Each set of 

pathogen-varying effects (e.g., the pathogen-specific intervention effect slopes) is structured as 

arising from a population of parameters with shared mean and variance.14,15 The population-level 

mean corresponds to the weighted-average expected effect across all pathogens and the 

population-level variance indicates the extent to which the effect differs by pathogen. We also 

estimate population-level covariances between the different sets of pathogen-varying effects to 
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account for dependencies between effects, for example if the effect of the intervention on a 

specific pathogen is greater when the background prevalence of that pathogen (represented by 

the pathogen-specific intercept) is also higher. By accounting for correlations between pathogen 

outcomes, the IPD random effects meta-analysis approach provides adaptive control of the 

individual treatment effect estimates for each separate pathogen as well as an estimate of the 

generalized effect across pathogens.14,16 Such partial pooling of effect estimates helps control the 

false discovery rate for individual outcomes, avoiding the need for post hoc multiple comparison 

adjustments.12,17 

The primary outcome will be assessed using the population-level mean slope for the 

intervention effect term from the model fit using only the 22 bacteria, protozoa, and soil 

transmitted helminths specified in the primary outcome description above. The raw parameter 

will be estimated on the log-odds scale and exponentiated to obtain the prevalence odds ratio as 

the measure of effect. Secondary outcomes include intervention effects on the prevalence of each 

individual pathogen, including enteric viruses, which are excluded from the primary outcome. 

The same IPD random effects meta-analysis approach will be applied to all 27 pathogens 

simultaneously, with the pathogen-specific intervention effect slopes providing the effect 

estimates for individual pathogens. A fully Bayesian model formulation will be used to account 

for multiple sources of uncertainty and provide estimation stability through the use of 

regularizing priors.16 Parameter posterior density distributions will be summarized using the 

mean to represent the expected effect size and the central 95% probability interval to capture the 

range of effect sizes compatible with the data (the 95% compatibility interval [CI]). Parameters 

with 95% CIs that exclude the null will be considered significant, although the magnitude and 
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uncertainty of parameter estimates will also be considered holistically in evaluating the evidence 

for clinically or physically meaningful effects.12,18 

Additional secondary outcomes include both pathogen-specific and population-level 

effects of the sanitation intervention on mean pathogen gene copy density. Density outcomes will 

also be analyzed with IPD random-effects meta-analysis by scaling gene copy densities for each 

pathogen by the empirical pathogen-specific standard deviation among samples in which the 

pathogen was detected. Non-detects will be considered true zeros and censoring will be used to 

create a zero class (as in Tobit regression).19,20 For such "continuous abundance" data, positive 

values are treated as ordinary continuous data, while negative values are considered non-detects, 

such that increasingly negative values for the mean correspond to lower pathogen prevalence. 

 

Continuous Anthropometry Outcomes 

The effects of the intervention on mean HAZ, WAZ, and WHZ will be analyzed separately as 

secondary outcomes using generalized estimating equations (GEE) and robust standard errors 

with exchangeable correlation structure and clustering by compound (the level at which the 

sanitation intervention was delivered).3,21,22 The estimated difference in age-adjusted z-scores by 

treatment assignment will be used as the measure of effect. 

 

Binary Caregiver-Reported and Growth Faltering Outcomes 

The effects of the intervention on the period-prevalence of diarrhea and the prevalence of growth 

faltering metrics (stunting, underweight, and wasting), as well as for caregiver-reported negative 

control outcomes (bruising, scrapes, and abrasions; toothache), will be analyzed separately as 

secondary outcomes by Poisson regression using GEE with robust standard errors to estimate 
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prevalence ratios as the measure of effect.3 As with the continuous anthropometry outcomes, we 

will use an exchangeable correlation structure and clustering by compound. 

 

Adjustment Set 

All models will be fit both unadjusted (with only an indicator of treatment assignment and 

accounting for clustering at the compound level) and adjusted for a set of covariates selected a 

priori as potential confounders of the sanitation-enteric pathogen carriage relationship. The 

adjustment set includes child age and sex, caregiver's education, and household wealth index.3,23  

 

Sub-group Analyses 

Effect Measure Modification by Age 

The prevalence and type of enteric infections are strongly related to child age.2,3,24 We will 

examine effect measure modification of the primary and secondary outcomes stratifying by age 

group (1-11 months, 12-23 months, and 24-60 months).  

 

Independently Upgraded Controls 

Children living in control compounds deemed to have independently upgraded their sanitation 

infrastructure to conditions comparable to the original intervention will be excluded from the 

main analyses. Two sets of subgroup analyses will instead be conducted that include all 

participants: one in which children in independently upgraded controls are considered as part of 

the control (non-intervention) arm, and again considered as part of the intervention arm. We will 

compare parameter estimates from the three sets of analyses (independent upgrades excluded, 

independent upgrades as controls, and independent upgrades as interventions) to investigate 
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whether the sanitation improvements independently available in the study communities, which 

may represent more accessible options for achieving greater coverage of high-quality sanitation 

infrastructure, are comparable to the full sanitation intervention package assessed in the MapSan 

trial in terms of child health impacts. 

 

Exclusion of Giardia spp. from the Outcome Set 

Stool-based detection of a given pathogen is an unambiguous indicator of previous exposure.4 

Giardia spp. is one of the most commonly detected pathogens in child stool in low- and middle-

income countries, including in the original MapSan study cohort and elsewhere in southern 

Mozambique.2,3,25,26 The high prevalence of Giardia spp., which has been found to increase 

rapidly with age, demonstrates a failure to prevent exposure.27 However, persistent shedding of 

Giardia spp. has also been observed in endemic areas, to the extent that it has been suggested it 

functions as something of a gut commensal in such settings, even potentially protecting against 

diarrheal illness.28–30 Whether arising from persistent infection or rapid re-infection, the extended 

shedding suggests that detection of Giardia spp. may not serve as a meaningful indicator of 

recent exposure in the context of household sanitation infrastructure. Although household 

finished flooring was associated with reduced G. duodenalis prevalence in both Bangladesh and 

Kenya, onsite sanitation interventions were not associated with Giardia spp. in rural Bangladesh 

or Zimbabwe, nor in urban Mozambique.3,31–33 Recognizing that its unique and insufficiently 

understood epidemiology may limit interpretation, we will repeat the primary outcome analysis 

with Giardia spp. excluded from the outcome set, using the remaining 21 non-viral pathogens to 

estimate the weighted-mean intervention effect on pathogen prevalence. 
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Negative Control Analyses 

As objective measures of pathogen exposure, stool-based pathogen outcomes (including the 

primary outcome) are not subject to differential response by treatment arm and thus not 

amenable to traditional negative control analysis that uses other outcomes thought to be 

unrelated to the intervention to assess response bias.4,34 However, negative extraction controls 

(NEC) and no-template controls (NTC) will be processed routinely during TAC analysis to 

monitor for sample cross-contamination.35 We will assess two caregiver-reported negative 

control outcomes for each child: the 7-day period-prevalence of bruises, scrapes, or abrasions 

and the 7-day period-prevalence of toothache.34,36 These outcomes will be ascertained in 

caregiver surveys and analyzed in the same manner as described for caregiver-reported outcomes 

of interest (e.g., diarrhea). We do not expect the intervention to impact either child bruising or 

toothache prevalence, so significant differences in these outcomes by treatment arm would 

suggest possible bias in our caregiver-reported outcomes. 

 

Missing Data 

Records missing covariate data will be excluded from adjusted analyses. Analyses will be 

repeated with missing covariate data imputed by multivariate imputation using chained equations 

(MICE) as a sensitivity analysis.3,37 

 

Minimum Detectable Effect Size 

The number of participants will be constrained by the number of compounds previously enrolled 

in the MapSan trial. At the 24 month follow-up, an average of 2.5 children per compound were 

enrolled from 408 compounds.3 Compound-level intra-class correlation coefficients (ICCs) were 
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generally less than 0.1 for individual pathogens, corresponding to cluster variances of ~0.05. We 

calculate the minimum detectable effect size (MDES) on individual pathogen prevalence with 

80% power, 5% significance level, and 0.05 compound cluster variance for both a conservative 

scenario with 200 compounds per treatment arm and 2 children enrolled per compound (for 800 

children total, 400 per arm) and an optimistic yet realistic scenario of 220 compounds per 

treatment arm and 2.5 children enrolled per compound (550 children per arm, 1100 total).38–40 

For either scenario, the minimum baseline (untreated) prevalence required to obtain 80% power 

is 7-8%. On the multiplicative scale, the MDES for prevalence ratio decreases (that is, a smaller 

relative reduction is required to attain 80% power) as pathogen prevalence increases towards 

100% (Figure 1). The difference between the two scenarios on the multiplicative scale is 

relatively minor, with the relative reduction MDES largely driven by pathogen baseline 

prevalence. A pathogen with baseline prevalence of 15% or less must have its prevalence more 

than halved (PR < 0.5) in order to attain 80% power, while a 25% reduction is detectable for 

baseline prevalence of 40-46%. We expect the simultaneous consideration of multiple pathogens 

to reduce the MDES for the primary outcome meta-analytic intervention effect by effectively 

increasing the sample size. Because this group-mean effect is dependent on the prevalence of 

each pathogen considered and the correlations between them, we will conduct simulation 

analyses to characterize plausible MDES ranges for the meta-analytic primary outcome.13,39 
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Figure 1. Range of minimum detectable effect sizes (shaded region) for the percent reduction in 

pathogen prevalence with 80% power, 5% significance level, and 0.05 cluster variance across 

two sample size scenarios. The upper edge of the shaded area represents a conservative scenario 

with 800 total participants (2 per compound, 200 compounds per arm) while the lower edge 

corresponds to a more optimistic scenario with 1100 total participants (2.5 per compound, 220 

compounds per arm). The vertical lines show the prevalence of a subset of pathogens assessed in 

control compound children during the 24-month follow-up in the original MapSan trial. Line 

color indicates the specific pathogen and line pattern reflects the pathogen class.  
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Appendix A. Illustrative Model Specifications 

The models used to conduct the IPD random effects meta-analyses will inevitably require 

iterative development and refinement to ensure estimation accuracy and computational 

stability.41,42 The following model specifications for binary (Section A1) and continuous 

abundance (Section A2) outcomes illustrate the components likely to be incorporated into such 

models to estimate the quantities of interest specified in the analysis plan above. However, fitting 

the models with Markov chain Monte Carlo (MCMC) will at the very least require re-expressing 

the models using alternative parameterizations that support robust and efficient sampling; while 

mathematically equivalent, such reparameterizations trade interpretability for improved 

computational qualities.14,43 
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A1. Binary Outcome Model 

 

Indices 

children: 𝑖 ∈ 1, … , 𝑁 

compounds: 𝑗 ∈ 1,… , 𝐽 

pathogens:  𝑞 ∈ 1,… , 𝑄 

covariates: 𝑘 ∈ 1,… , 𝐾 

 

Structure 

𝑦𝑖,𝑗,𝑞~Bernoulli( 𝑝𝑖,𝑗,𝑞) 

logit( 𝑝𝑖,𝑗,𝑞) = 𝛼𝑘𝑖𝑑[𝑖] + 𝛼𝑐𝑜𝑚𝑝[𝑗] + 𝛼𝑝𝑎𝑡ℎ[𝑞] + 𝛽𝑝𝑎𝑡ℎ[𝑞]𝑥𝑖 + 𝛾1,𝑝𝑎𝑡ℎ[𝑞]𝑧𝑖,1 + ⋯

+ 𝛾𝐾,𝑝𝑎𝑡ℎ[𝑞]𝑧𝑖,𝐾  

𝛼𝑘𝑖𝑑[𝑖]~Normal(0, σkid) 

𝛼𝑐𝑜𝑚𝑝[𝑗]~Normal(0, σcomp) 

[
 
 
 
 
𝛼𝑝𝑎𝑡ℎ[𝑞]

𝛽𝑝𝑎𝑡ℎ[𝑞]

𝛾1,𝑝𝑎𝑡ℎ[𝑞]

⋮
𝛾𝐾,𝑝𝑎𝑡ℎ[𝑞]]

 
 
 
 

~ MVN

(

 
 

[
 
 
 
 
𝛼
𝛽
𝛾1

⋮
𝛾𝐾]

 
 
 
 

, Σ

)

 
 

  

Σ = τ × Ω × τ 

τ =

(

  
 

𝜎𝛼 0 … 0

0 𝜎𝛽 ⋮

⋮ 𝜎𝛾1

⋱ 0
0 … 0 𝜎𝛾𝐾)

  
 

 

Ω =

(

  
 

1 𝜌𝛼,𝛽 … 𝜌𝛼,𝛾𝐾

𝜌𝛽,𝛼 1 ⋮

⋮
⋱

𝜌𝛾𝐾,𝛼 … 1 )
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Interpretation 

Table A1. Interpretation of Binary Outcome Model Terms 

Term Interpretation 

𝑦𝑖,𝑗,𝑞 Detection status of pathogen 𝑞 in child 𝑖 from compound 𝑗 

𝑝𝑖,𝑗,𝑞 Probability of detecting pathogen 𝑞 in child 𝑖 from compound 𝑗 

𝛼𝑘𝑖𝑑[𝑖] 
Child-specific random effect for child 𝑖; the change in log-odds of any pathogen 

for child 𝑖 

σkid 

Group standard deviation for child-level random effects; larger value indicates 

greater clustering of pathogen outcomes by child and results in less pooling of 

information between children 

𝛼𝑐𝑜𝑚𝑝[𝑗] Compound-specific random effect for compound 𝑗 

σcomp  
Group standard deviation of compound-level random effects; larger value 

indicates greater clustering of pathogen outcomes by compound and results in 

less pooling of information between compounds 

𝛼𝑝𝑎𝑡ℎ[𝑞] 
Pathogen-specific intercept for pathogen 𝑞; the log-odds of pathogen 𝑞 without 

the treatment and in the reference group for all covariates 

𝛼 
Group mean of the intercept across all 𝑄 pathogens; the log-odds of a generic 

pathogen without the treatment and in the reference group for all covariates 

𝛽𝑝𝑎𝑡ℎ[𝑞] 

Pathogen-specific effect of the treatment on the log-odds of pathogen 𝑞, 

conditional on the other covariates; exp (𝛽𝑝𝑎𝑡ℎ[𝑞]) gives the conditional odds 

ratio for the effect of the treatment on pathogen 𝑞 

𝑥𝑖 Treatment condition for child 𝑖 

𝛽 

Group mean conditional treatment effect across the population of 𝑄 pathogens; 

the meta-analytic estimate of the conditional effect of the treatment on a generic 

enteric pathogen 

𝛾𝑘,𝑝𝑎𝑡ℎ[𝑞] Conditional effect of covariate 𝑘 on the log-odds of pathogen 𝑞 

𝑧𝑖,𝑘 Value of covariate 𝑘 for child 𝑖 

𝛾𝑘 
Group mean conditional effect of covariate 𝑘 across the population of 𝑄 

pathogens 

Σ 

Symmetric 𝐾 + 2 matrix with the group variance of each pathogen-varying effect 

(𝛼, 𝛽, 𝛾𝑘) on the diagonal and their covariances on the off-diagonals; 

decomposes into the scale matrix 𝜏 and the correlation matrix Ω 

τ 

The scale matrix for pathogen-varying effects 𝛼,𝛽,  𝛾𝑘: a 𝐾 + 2 diagonal matrix 

of the group standard deviations 𝜎𝛼 , 𝜎𝛽, 𝜎𝛾𝑘
; these standard deviations reflect the 

extent to which each effect varies across the group of 𝑄 pathogens, with larger 

values indicating greater differences between pathogens 

Ω 

The correlation matrix for pathogen-varying effects 𝛼, 𝛽,  𝛾𝑘: a 𝐾 + 2 square 

matrix with the pairwise correlations 𝜌𝛼,𝛽, etc. on the off-diagonals; these 

correlations reflect how the different effects co-vary by pathogen. The 

correlations between 𝛼 and each of the other effects are of particular interest as 

they indicate how lower or high background pathogen prevalence may modulate 

the treatment effect and the other covariate effects 
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Anticipated Hyperpriors 

𝛼~Normal(−1,2), 𝜎𝛼~Normal+(0,1) 

𝛽~Normal(0,1), 𝜎𝛽~Normal+(0,1) 

𝛾𝑘~Normal(0,1), 𝜎𝛾𝑘
~Normal+(0,1) 

Ω~LKJcorr(𝜂), 𝜂 ≥ 1 

𝜎𝑘𝑖𝑑~Normal+(0,1), 𝜎𝑐𝑜𝑚𝑝~Normal+(0,1) 

The Normal(−1,2) prior on 𝛼, which is on the log-odds scale, implies an expected prevalence 

for a generic pathogen of logit−1(−1) ≈ 27%, a 68% chance that the prevalence falls between 

5% and 73%, and a 95% chance that the prevalence is between 0.7% and 95%.16,44 Combined 

with the additional variation contributed by the group standard deviation 𝜎𝛼, which is given a 

standard half-normal (positive constrained) prior of its own, this choice of priors allows the 

pathogen-specific intercept 𝛼𝑝𝑎𝑡ℎ[𝑞] for each individual pathogen 𝑞 to take on any reasonable 

prevalence value while providing gentle regularization towards values of prevalence greater than 

0% and less than 50%. Because we will not include pathogens in the analysis that we believe to 

be truly absent (0% prevalence, which by definition cannot be affected by the intervention) and 

few individual enteric pathogens typically occur at >50% prevalence in previous studies, this 

weakly informative hyperprior generally reflects our prior knowledge while providing sufficient 

flexibility for strong signals in the data to change the parameter estimates accordingly. This 

approach can encourage good computational behavior by softly constraining the sampler away 

from extreme (unreasonable) values and introducing light smoothing, which is particularly 

desirable for complex, high dimensional models such as these, where unconstrained estimation 

can be susceptible to erratic, unreliable behavior in the presence of ordinary noise in the data.14,44 
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See Supporting Information S13 of Holcomb et al. (2021) for additional discussion of prior 

choice in hierarchical logistic models of enteric microbe prevalence.16 

Similarly, the standard normal priors for 𝛽 and 𝛾𝑘 on the log-odds scale imply that each 

effect has a 95% chance of reducing the prevalence of a generic pathogen by up to 22 percentage 

points (that is, an absolute risk difference of 0.22) for a pathogen with a background prevalence 

of 27% (the expected value of the intercept, 𝛼). This is a large effect size, though not impossible, 

and similarly provides gentle regularization towards moderate values (in this case, towards no 

effect) while allowing truly large effect sizes for sufficiently strong evidence from the data. In 

addition to assisting computationally, this weak regularization towards the null helps control 

false discoveries that would be expected to arise from ordinary noise in the data when comparing 

multiple outcomes by introducing light smoothing that requires stronger patterns in the data to 

register as credible effects.12,17 The degree of smoothing applied to effect estimates for individual 

pathogens, 𝛽𝑝𝑎𝑡ℎ[𝑞] and 𝛾𝑘,𝑝𝑎𝑡ℎ[𝑞], is learned from the data and represented by the group standard 

deviations 𝜎𝛽 and 𝜎𝛾𝑘
. Larger group standard deviation estimates correspond to greater 

variability by pathogen and thus impose relatively less smoothing on the effect estimates. The 

independent standard half-normal priors on the group standard deviations likewise allows for a 

wide range of plausible values when considered on the probability scale, while discouraging 

extremely large values.16,45,46 

The group correlations between the pathogen varying effects (𝜌𝛼,𝛽 , 𝜌𝛽,𝛾1
, etc.) are 

collectively given an LKJ prior on the correlation matrix, which imposes the [-1,1] constraint on 

correlations but otherwise assigns approximately uniform prior density across that range when 

shape parameter 𝜂 = 1.14,47 Larger values of 𝜂 increase the weight around zero, which can be 

used to regularize the correlation estimates towards smaller absolute values. 𝜂 = 2 is likely a 
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reasonable default value to provide weak regularization for computational purposes while still 

permitting strong correlations when warranted.14,43 
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A2. Continuous Abundance Outcome Model 

 

Indices 

children: 𝑖 ∈ 1, … , 𝑁 

compounds: 𝑗 ∈ 1,… , 𝐽 

pathogens:  𝑞 ∈ 1,… , 𝑄 

covariates: 𝑘 ∈ 1,… , 𝐾 

 

Structure 

𝑦𝑖,𝑗,𝑞 = {
𝑤, 𝑤 > 0
0, 𝑤 ≤ 0

 

𝑤𝑖,𝑗,𝑞~Normal(𝜇𝑖,𝑗,𝑞, 𝜎𝑝𝑎𝑡ℎ[𝑞]) 

𝜎𝑝𝑎𝑡ℎ[𝑞]~Normal+(𝜎𝑦 , 𝜎𝜎) 

𝜇𝑖,𝑗,𝑞 = 𝛼𝑘𝑖𝑑[𝑖] + 𝛼𝑐𝑜𝑚𝑝[𝑗] + 𝛼𝑝𝑎𝑡ℎ[𝑞] + 𝛽𝑝𝑎𝑡ℎ[𝑞]𝑥𝑖 + 𝛾1,𝑝𝑎𝑡ℎ[𝑞]𝑧𝑖,1 + ⋯+ 𝛾𝐾,𝑝𝑎𝑡ℎ[𝑞]𝑧𝑖,𝐾 

𝛼𝑘𝑖𝑑[𝑖]~Normal(0, σkid) 

𝛼𝑐𝑜𝑚𝑝[𝑗]~Normal(0, σcomp) 

[
 
 
 
 
𝛼𝑝𝑎𝑡ℎ[𝑞]

𝛽𝑝𝑎𝑡ℎ[𝑞]

𝛾1,𝑝𝑎𝑡ℎ[𝑞]

⋮
𝛾𝐾,𝑝𝑎𝑡ℎ[𝑞]]

 
 
 
 

~ MVN

(

 
 

[
 
 
 
 
𝛼
𝛽
𝛾1

⋮
𝛾𝐾]

 
 
 
 

, Σ

)

 
 

  

Σ = τ × Ω × τ 

τ =

(

  
 

𝜎𝛼 0 … 0

0 𝜎𝛽 ⋮

⋮ 𝜎𝛾1

⋱ 0
0 … 0 𝜎𝛾𝐾)

  
 

 

Ω =

(

  
 

1 𝜌𝛼,𝛽 … 𝜌𝛼,𝛾𝐾

𝜌𝛽,𝛼 1 ⋮

⋮
⋱

𝜌𝛾𝐾,𝛼 … 1 )
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Interpretation 

The continuous abundance outcome IPD meta-analysis model specification remains largely the 

same as for binary outcome model, exchanging the Bernoulli likelihood with probability 𝑝𝑖,𝑗,𝑞 for 

a Gaussian likelihood with child-, compound-, and pathogen-specific mean 𝜇𝑖,𝑗,𝑞 and pathogen-

specific standard deviation 𝜎𝑝𝑎𝑡ℎ[𝑞]. All the additive components of logit(𝑝𝑖,𝑗,𝑞) remain the same 

for 𝜇𝑖,𝑗,𝑞  (which is not subjected to a link function), although the hyperpriors assigned to each 

additive component are adjusted to reflect the different scale of the continuous abundance data. 

The pathogen-specific residual standard deviations 𝜎𝑝𝑎𝑡ℎ[𝑞] are drawn from a half-normal 

distribution with mean 𝜎𝑦, the population-level residual standard deviation that describes the 

variation in observed gene copy densities after accounting for the effects of the other model 

components that comprise 𝜇𝑖,𝑗,𝑞 . The group standard deviation 𝜎𝜎 functions similarly to other 

group standard deviations (e.g., 𝜎𝑐𝑜𝑚𝑝) in describing the extent to which the residual standard 

deviations vary between different pathogens. Such hierarchical variance parameter structures are 

often challenging to fit in practice due to poor identifiability and unfavorable geometries for 

efficient Markov chain Monte Carlo sampling (MCMC). It may therefore be necessary to 

simplify the pathogen-specific standard deviations into a single shared residual standard 

deviation 𝜎𝑦. Because the gene copies densities will pre-scaled by their pathogen-specific 

empirical standard deviations, the scaled model inputs will already share a standard deviation of 

approximately 1, which should allow the single, global 𝜎𝑦 to adequately capture the residual 

standard deviation for all pathogens. 

Besides the different likelihood to accommodate continuous outcomes and the additional 

variance parameter it requires, the key structural difference for the continuous abundance model 

is the introduction of the latent continuous gene copy density variable 𝑤𝑖,𝑗,𝑞. While the Bernoulli 
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likelihood is applied directly to observed binary outcome 𝑦𝑖,𝑗,𝑞, the normal likelihood in the 

continuous abundance model applies instead to the latent continuous variable 𝑤𝑖,𝑗,𝑞, which has 

unbounded support over (−∞,∞). The observed gene copy density 𝑦𝑖,𝑗,𝑞 has a lower bound with 

[0,∞) support, however, which is realized by censoring negative values of 𝑤𝑖,𝑗,𝑞 at zero; 

otherwise, 𝑦𝑖,𝑗,𝑞  simply takes the value of positive 𝑤𝑖,𝑗,𝑞.20 This creates probability mass at zero 

for an otherwise continuous outcome, with more negative values of 𝜇𝑖,𝑗,𝑞 (the mean of 𝑤𝑖,𝑗,𝑞) 

implying a lower probability of detecting the pathogen that was assessed in observation 𝑦𝑖,𝑗,𝑞 . 

 

Anticipated Hyperpriors 

𝛼~Normal(0,2), 𝜎𝛼~Normal+(0,3) 

𝛽~Normal(0,1), 𝜎𝛽~Normal+(0,1) 

𝛾𝑘~Normal(0,1), 𝜎𝛾𝑘
~Normal+(0,1) 

Ω~LKJcorr(𝜂), 𝜂 ≥ 1 

𝜎𝑘𝑖𝑑~Normal+(0,1), 𝜎𝑐𝑜𝑚𝑝~Normal+(0,1) 

𝜎𝑦~Normal+(0, 1), 𝜎𝜎~Normal+(0,1) 

Because the input data are pre-scaled by the empirical pathogen-specific standard deviation, the 

hyperpriors selected assuming the unit scale for the binary outcomes largely continue to hold for 

the scaled continuous abundance data. A notable exception is the population-level mean 𝛼, for 

which an informative prior is used for the binary outcome case to reflect our prior knowledge 

that most pathogens can be expected to have a prevalence greater than 0% but less than 50%. We 

lack similar prior knowledge for gene copy density and therefore default to a zero-mean prior for 

the population-level scaled gene copy density across all pathogens, 𝛼. A challenge of the 

censoring-at-zero approach to modeling continuous abundance is that the magnitude of the 
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continuous outcome in positive samples and the probability of observing a positive are both 

controlled by a single mean parameter, 𝜇, for the latent continuous variable 𝑤. While the choice 

of priors for the components of 𝜇 (namely 𝛼) are readily interpretable for positive values of 𝜇, 

with higher values translating directly to scaled gene copy densities, negative values of 𝜇 are 

non-linearly related to decreasing prevalence of the target pathogen. Furthermore, while 

observed gene copy densities have been scaled by the standard deviation, such that 

approximately 95% of non-zero scaled densities should take values between zero and two, very 

low-prevalence targets may require mean values less than -2 to adequately reflect their low 

probability of detection. We therefore assume a standard deviation of 2 for 𝛼 to extend the range 

of prior density to a wider range of values, and also increase the standard deviation of 𝜎𝑎 to 3 to 

consider greater between-pathogen variability in the pathogen specific mean gene copy density 

𝛼𝑝𝑎𝑡ℎ[𝑞].  
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