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Statistical Analysis Plan 
Behavioral Data Analyses. For behavioral subjective scales, scores on self-compassion and 
mindfulness were calculated at T1, T2 and T3; and for MBI at T1 and T2. T2 vs. T1 and T3 vs. 
T1 scores were compared within each group using paired t-tests or its non-parametric 
equivalent Wilcoxon signed-rank test depending on the distribution of the behavioral scores; 
normality of distributions was checked using the Levene’s test. For mindfulness, we compared 
state mindfulness across the three time points, which is a component of the dispositional trait 
mindfulness scale [1] as we expected state but not trait mindfulness to be malleable with 
training.  

Cohen’s d effect sizes were calculated for both within and between-group differences. Repeated 
measures analyses of variance comparing between-group behavioral differences were not 
conducted in this first study given the large effect sizes (d >0.8) needed to observe significant 
group differences with adequate power. 

To investigate the relationship between outcome gains and training engagement, behavioral 
changes in the WellMind training group were correlated with the number of training sessions 
completed by participants using Spearman’s correlations.  

Neurocognitive Data Analyses. We applied a uniform processing pipeline to all EEG data 
published in several of our studies [2-10]. This included: 1) EEG channel data processing, and 2) 
cortical source localization of the EEG data to estimate source-level neural activity. This included: 
1) EEG channel data processing, and 2) cortical source localization of the EEG data to estimate 
source-level neural activity. 

1) EEG channel data processing was conducted using the EEGLAB toolbox v2020 in MATLAB 
v2020 [11]. EEG data was resampled at 250 Hz and filtered in the 1-45 Hz range to exclude 
ultraslow DC drifts at <1Hz and high-frequency noise produced by muscle movements and 
external electrical sources at >45Hz.  

Within the interoceptive attention task, EEG data were average-referenced and epoched to the 
LSL time-stamps of the response taps made by participants after every two breaths. Trials were 
epoched in the -4.0 sec to +4.0 sec window around response and categorized as either high 



consistency, i.e. attentive trials (trials with RT ≤ 1 median absolute deviation of median RT) or 
low consistency, i.e. distracted trials (trials with RT > 1 median absolute deviation of median RT). 
This epoch was chosen because it was not contaminated by motor artifacts given that median 
response times for two-breath monitoring across subjects were ~8 sec in the interoceptive task.  

There were no missing channels in the EEG data across subjects. Epoched data were cleaned 
using the autorej function in EEGLAB to remove noisy trials, i.e. >5SD outliers rejected over max 
8 iterations, followed by further cleaning of electrooculographic, electromyographic or non-brain 
source artifacts using the Sparse Bayesian learning (SBL) algorithm 
(https://github.com/aojeda/PEB) [10,12].The cleaned data were then band filtered in the 
physiologically relevant theta (4-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) frequency bands. 
Given that alpha band oscillations are dominant during eyes closed [13–16], as was also 
evidenced in our data (see Results), we exclusively source localized alpha band neural 
processing.   

2) We used the block-Sparse Bayesian learning (BSBL-2S) algorithm to localize the alpha 
frequency band filtered EEG data and partitioned the signals into cortical regions of interest 
(ROIs) and artifact sources [10,12]. BSBL-2S is a two-step algorithm in which the first-step is 
equivalent to low-resolution electromagnetic tomography (LORETA [17]). LORETA estimates 
sources subject to smoothness constraints, i.e. nearby sources tend to be co-activated, which 
may produce source estimates with a high number of false positives that are not biologically 
plausible. To guard against this, BSBL-2S applies sparsity constraints in the second step wherein 
blocks of irrelevant sources are pruned. Notably, this data-driven sparsity constraint reduces the 
effective number of sources considered at any given time as a solution, thereby reducing the 
uncertainty of the inverse solution. Thus, it is not that only higher channel density data can yield 
source solutions, the ill-posed inverse problem can also be solved by imposing more aggressive 
constraints on the solution to converge on the source model at lower channel densities, as also 
supported by prior research [18,19]. Of note, the BSBL-2S two-stage algorithm has been 
benchmarked to produce evidence-optimized inverse source models at 0.95AUC relative to the 
ground truth [10,12].  

For the source space activations, ROIs were based on the standard 68 brain region Desikan-
Killiany atlas [28] using the Colin-27 head model [20]. Artifacts still remaining in source space 
within individual subject data were removed using the Grubbs statistical test applied iteratively 
using  spline interpolation - an option available within the MATLAB isoutlier function [21], and 
population outliers across all sessions and subjects source data were removed using the >5SD 
criterion. ROIs were further grouped into canonical cognitive control networks that can undergo 
task-dependent modulation, i.e. the fronto-parietal network (FPN), cingulo-opercular network 
(CON) and the default mode network (DMN) [22–25]. Alpha band EEG data were trial-averaged 
for high vs. low consistency (i.e., attended vs. distracted) breath monitoring trials on the 
interoceptive attention task. These trials were compared for within-group pre vs. post activity 
differences in the fronto-parietal network (FPN), cingulo-opercular network (CON) and the default 
mode network (DMN) using paired t-tests. Effect sizes were also calculated for neural data, 
reported as Cohen’s d, 0.2: small, 0.5: medium, 0.8: large [26]. Given that we have observed large 
effect size neural outcomes (d >0.8) in our prior digital training studies [27-29], repeated measures 
analyses of variance (rm-ANOVA) were conducted to analyze between-group post vs. pre 
network effects; the Greenhouse–Geisser significance correction was applied to adjust for lack of 
sphericity. Finally, Spearman's correlations were used to analyze neurobehavioral associations.   
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