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TECHNICAL APPENDIX 

This appendix concerns the statistical analysis of the of the REaCH trials. Data from each trial were 
analysed separately. The document describes the analysis of the primary outcomes and summarises the 
statistical analysis plan; analysis of the secondary outcomes followed the same method with appropriate 
adjustment for the type of outcome.  

Endpoints 

The primary outcomes of the trial are: 

1. Consultation rate by remote consultation (consultations per patient-month) 
2. Consultation rate by face-to-face consultation (consultations per patient-month) 
3. Prescribing rate (prescriptions per patient-month) 
4. Trust in healthcare provider (PHBQ). 

Estimands 

We aimed to estimate the following treatment effects among the group of patients represented by the 
inclusion criteria: 

1. The rate ratio for the rate of remote consultations of patients enrolled in clinics that have received 
the REaCH training package versus patients in clinics providing standard care. 

2. The rate ratio for the rate of face-to-face consultations of patients enrolled in clinics that have 
received the REaCH training package versus patients in clinics providing standard care. 

3. The rate ratio for the rate of prescriptions for patients enrolled in clinics that have received the 
REaCH training package versus patients in clinics providing standard care. 

4. The mean difference in standardised PHBQ score between patients enrolled in clinics that have 
received the REaCH training package versus patients in clinics providing standard care. 

Our treatment effects are all intention to treat and participants are assigned the treatment status of the 
cluster providing treatment at the time of the consultation.  

Statistical analysis 

The primary outcomes are of two types: count data (the consultation and prescription rates) and a 
continuous score (the patient trust outcome). For the former we specify the following log-linear model, for 

patient 𝑖 = 1, … , 𝑁 in cluster 𝑗 = 1, … , 𝐽 at time period 𝑡 = 1, … 𝑇 with number of events 𝑦𝑖𝑗𝑡
(1)

: 

𝑦𝑖𝑗𝑡
(1)

~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑡) 

𝜆𝑖𝑗𝑡 = exp (𝜂𝑖𝑗𝑡
(1)

) (1) 

where 𝜂𝑖𝑗𝑡 is the linear predictor. For the continuous outcome 𝑦𝑖𝑗𝑡
(2)

 we specify: 

𝑦𝑖𝑗𝑡
(2)

~𝑁 (𝜂𝑖𝑗𝑡
(2)

, 𝜎2) (2) 

The specification of the linear predictor in both models takes the form: 

𝜂𝑖𝑗𝑡
(𝑝)

= 𝑥𝑖𝑗𝑡
′ 𝛽 + 𝛿𝐷𝑗𝑡 + 𝛼𝑗 + 𝜙𝑖 + 𝜓𝑗𝑡 (3) 

where 𝑥𝑖𝑗𝑡 is a vector patient-level covariates, 𝐷𝑗𝑡 is an indicator equal to one if cluster 𝑗 has the 

intervention at time 𝑡 and zero otherwise, and 𝛼𝑗~𝑁(0, 𝜎𝛼
2), 𝜙𝑖~𝑁(0, 𝜎𝜙

2) and 𝜓𝑗𝑡 ~𝑁(0, 𝜎𝜓
2) are 

cluster, individual, and cluster-time and random effects respectively. The parameter 𝛿 provides an 

estimator for the treatment effects: exp(𝛿) is the rate ratio.  

Estimation 

Algorithms for estimating the parameters of generalised linear mixed models can often fail. To ensure 
reliable estimates we will use two alternative fitting algorithms and compare results. We will use the R 
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package lme4, which uses a penalised quasi-likelihood approach, and glmmrBase, which provides 
Markov Chain Monte Carlo Maximum Likelihood (MCMCML) methods. In the event of any disagreement 
or failure of lme4, we will use the MCMCML results, otherwise we will take the lme4 results.  

Inference 

We will report point estimates, confidence intervals, and p-values but not make any claims of “statistical 
significance” given recent strong arguments against doing so[2]. Our interpretation of the results will be 
based on the patterns of evidence in the context of the implementation and qualitative analyses.  

P-values will be based on the null hypotheses 𝐻0: 𝛿 = 0 versus the two-sided alternatives 𝐻1: 𝛿 ≠ 0 in 
each of the models defined in Equations (1)-(3). P-values and related statistics generally do not have the 
nominal type I error rates when the number of cluster is small (e.g.[4,5]). We therefore estimate p-values 
using a permutation test based approach. Given there are multiple primary outcomes we will also report 
adjusted p-values for multiple testing using a stepdown method, which provides an efficient means of 
controlling the family-wise error rate[6]. The full details of permutation-based inference, including 
confidence intervals/sets and corrections for multiple testing are given in Watson et al (2023)[7]. Here, 
we give a brief outline. 

Our test statistic is a sum of residuals: 𝑇 =  ∑ ∑ ∑ (𝐷𝑗𝑡
∗ (𝑦𝑖𝑗𝑡 − 𝜇𝑖𝑗𝑡))𝑖𝑡𝑗  where 𝐷𝑗𝑡

∗  is the modified 

treatment indicator equal to one if the cluster had the intervention at time 𝑡 and -1 otherwise. The 

parameter 𝜇𝑖𝑗𝑡 = ℎ(𝜂𝑖𝑗𝑡) where ℎ is the link function. To implement a permutation test, we re-randomise 

the clusters 10,000 and re-calculate the value of the test statistic under the null hypothesis, with all other 
“nuisance” parameters fixed to their maximum likelihood estimates. The p-value is derived by comparing 
the actual test statistic against the sample of permuted test statistics, as shown below. Confidence intervals 
can be derived from this method using the search procedure proposed by Garthwaite[8,9].  

To describe extending the permutation-test based method to correct for multiple testing, let there be 𝑃 

hypotheses to be tested 𝐻1 , … , 𝐻𝑃 with associated test statistics 𝑇𝑝. We let the ordered test statistics be 

𝑇[1] ≥ 𝑇[2] ≥ ⋯ ≥ 𝑇[𝑃] 

corresponding to hypotheses 𝐻[1], … , 𝐻[𝑃]. The family of hypotheses being tested is 𝐾 ⊂ {1, … , 𝑃}. We 

first describe a stepdown procedure for the decision to accept/reject given a value for the type I error 

rate 𝛼 as this provides a way of deriving the associated p-value that we will report. The stepdown 
method works by firstly testing if the joint null hypothesis that all null hypotheses are true by comparing 

the largest test statistic to some critical value 𝑐𝐾 (1 −
𝛼

2
). If it is smaller than this critical value we accept 

all null hypotheses otherwise we reject 𝐻[1] and test the remaining hypotheses as a new family in the 

same way. More specifically, the algorithm is 

1. Let 𝐾1 = {1, … , 𝑃}. If 𝑇[1] ≤ 𝑐𝐾1
(1 −

𝛼

2
) then accept all hypotheses and stop, otherwise reject 

𝐻[1] and continue. 

2. Let 𝐾2 be the indices of hypotheses not previously rejected. If 𝑇[2] ≤ 𝑐𝐾2
(1 −

𝛼

2
) the accept all 

remaining hypotheses, otherwise reject 𝐻[2] and continue. 

3. … 

The critical values here are the 1 −
𝛼

2
 quantiles of the distribution of the largest test statistic for the 

relevant family of hypotheses. Exact distributions may not exist, however we can derive them using a 
permutation testing approach. As before, we can use this distribution to determine the p-value.  

At each stage of the stepdown algorithm we are testing the largest test statistic, that is 𝑇𝐾 = max
𝑞∈𝐾

𝑇𝑞 

and then if the associated hypothesis is rejected, we create a new family of hypotheses that excludes 

the rejected hypothesis. If we re-randomise the clusters the for each permutation 𝑚 = 1, … , 𝑀 we can 

re-calculate the desired test statistic, 𝑇𝐾
(𝑚)

, to create our reference distribution. The p-value is then: 
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𝑝[𝑘] =
1

𝑀 + 1
∑ (1 + 𝐼 (𝑇𝐾

(𝑚)
≥ 𝑇𝐾))

𝑀

𝑚=1

 

That is to say that the reference distribution for the largest test statistic is the largest test statistics from 
the permutations, and so on.  

In the main report we provide p-values and confidence sets both with and without multiple testing 
corrections. 

Missing data 

We had pre-specified analyses to evaluate the effect of any missing data. However, only 0.8% of 
observations were missing across our primary outcomes, and so no missing data analyses were performed 
as any effects would be negligible. 

 

References 

1. Hemming K, Taljaard M, Forbes A. Analysis of cluster randomised stepped wedge trials with 
repeated cross-sectional samples. Trials. 2017 Dec 1;18(1):101. 

2. McShane, Blakeley B., et al. "Abandon statistical significance." The American 
Statistician 73.sup1 (2019): 235-245 

3. Romano JP, Wolf M. Exact and approximate stepdown methods for multiple hypothesis testing. 
Journal of the American Statistical Association. 2005 Mar 1;100(469):94-108 

4. Watson SI, Akinyemi J, Hemming K. Permutation-based multiple testing corrections for p-values 
and confidence intervals for cluster randomised trials. Statistics in Medicine. 2023 [In press] 
 

 


