Metabolic substrate support in left ventricular hypertrophy -HINGE Trial (Hypertrophy, Insulin, Glucose and Electrolytes Trial)

Submission date Recruitment status Prospectively registered 30/09/2005 No longer recruiting [] Protocol [] Statistical analysis plan Registration date Overall study status 30/09/2005 Completed [X] Results [] Individual participant data Last Edited Condition category Circulatory System 28/03/2012

Plain English summary of protocolNot provided at time of registration

Contact information

Type(s)

Scientific

Contact name

Mr D Pagano

Contact details

Cardiac Surgery Queen Elizabeth Hospital Birmingham United Kingdom B15 2TH

Additional identifiers

EudraCT/CTIS number

IRAS number

ClinicalTrials.gov number

Secondary identifying numbers

N0265150472

Study information

Scientific Title

Study objectives

This study assesses the effect of supplementing naturally-occurring insulin and energy sources (glucose) on heart protection during aortic valve replacement surgery. These treatments have a sound experimental basis for improving outcome. If this improvement is confirmed surgical results could be materially improved. We will be studying heart function, heart muscle energy stores and chemicals which quantify the amount of heart muscle injury.

Ethics approval required

Old ethics approval format

Ethics approval(s)

Not provided at time of registration

Study design

Randomised controlled trial

Primary study design

Interventional

Secondary study design

Randomised controlled trial

Study setting(s)

Hospital

Study type(s)

Treatment

Participant information sheet

Not available in web format, please use the contact details below to request a patient information sheet

Health condition(s) or problem(s) studied

Aortic valve replacement

Interventions

On the morning of surgery patients will be randomised to one of two groups. There are 2 groups of patients in this trial, allocated to receive placebo or G.I.K.

- 1. Group A. receive dextrose 5% run at 0. 75ml/kg/h rounded to the nearest 10 mls/hr starting at sternotomy and finishing 6 hours following release of the aortic cross clamp.
- 2. Group B: a central intravenous G.I.K. (500 ml of 40% glucose 35 units insulin 50 mmols of KC1) run at 0. 75 mis/kg/hr rounded to the nearest 10 mls/hr starting at sternotomy and finishing 6 hours following release of the aortic cross clamp.

Blood for baseline CKMB and cTnI will be drawn for centrifuge and storage and arterial blood gases (ABC) will be withdrawn for immediate analysis in the anaesthetic room before standard induction using the arterial line routinely inserted before induction of anaesthesia additional). Alter induction a pulmonary artery balloon flotation catheter will be positioned in the anaesthetic room and the patient then transferred to the operating room (normal clinical practice or additional). Approximately 40% have such catheters placed routinely for clinical reasons - in the study they will be used in every patient).

Baseline cardiac output studies, pulmonary capillary wedge pressures (normal clinical practice in the patients or additional).

Surgery will proceed as normal with 1/2 hourly K+ and blood glucose sampling pre-CPB, 20 minutely during CPB and 1 hourly post CPB with protocol based management of blood glucose and potassium. The protocol is based on that used in the DIGAMI study (additional).

Anaesthetic and CPB management will be standardized to control for known factors affecting outcome including pH management, C02 control, re-warming protocols etc. Myocardial protection will be afforded by cold blood cardioplegia. Criteria for the initiation of inotropic or other support will be standardized. Ventilator weaning criteria are standard (normal clinical practice).

During the conduct of the operation in certain cases, the surgeon will place a monitoring cannula in the coronary sinus under direct vision. Such placement is a standard technique for administration of retrograde cardioplegia. In this study it will be placed to undertake oximetric measurement and will be removed at the end of cardiopulmonary bypass. Its insertion and removal are performed under direct vision. The risk associated with this procedure is minimal and should be no greater than the risk of pulmonary flotation catheter insertion (i.e.1:15000 adverse events) (additional).

Myocardial biopsies for will be performed just prior to aortic cross clamp application, just prior to aortic cross clamp release and after 10 minutes of reperfusion. Myocardial diopsies will be snap frozen and stored as mentioned above (additional). In addition a small amount of epicardial and thigh fat and rectus abdominis muscle (pea size) will be removed at approximately the same time. These will be taken from exposed sites through the sternotomy and long saphenous vein harvest sites (additional).

Intervention Type

Other

Phase

Not Specified

Primary outcome measure

Not provided at time of registration

Secondary outcome measures

Not provided at time of registration

Overall study start date

13/08/2004

Completion date

13/08/2008

Eligibility

Key inclusion criteria

Patients eligible for entry into the trial will be consulted and recruited in:

- 1. Pre-surgical consultation clinic
- 2. Pre-admission clinic
- 3. During hospital admission for surgery

Before surgery they will have an echocardiogram/MRI scan to assess left ventricular hypertrophy. 2D directed M-mode echocardiography will be used to determine LV mass using the anatomically-validated cube formula. Consistency will be cross-checked using LV mass quantification from the area-length 2D method. There is no risk associated with transthoracic echocardiography. A subset of subjects will also undergo LV mass assessment using MRS. LV mass will be calculated using serial contiguous short axis TrueFISP cine sequences with 7mm slice thickness and 3mm gap using a 1.5-Tesla magnet. Analysis will be performed off-line using Siemens ARGOS software. There is no biological risk to MR scanning, although patients with ferromagnetic material within the body have to be excluded (the most common example is that of older cerebral aneurysm clips).

Participant type(s)

Patient

Age group

Adult

Sex

Both

Target number of participants

Not provided at time of registration

Key exclusion criteria

Patients with ferromagnetic material within the body.

Date of first enrolment

13/08/2004

Date of final enrolment

13/08/2008

Locations

Countries of recruitment

England

United Kingdom

Study participating centre Cardiac Surgery

Birmingham United Kingdom B15 2TH

Sponsor information

Organisation

Department of Health

Sponsor details

Richmond House 79 Whitehall London United Kingdom SW1A 2NL +44 (0)20 7307 2622 dhmail@doh.gsi.org.uk

Sponsor type

Government

Website

http://www.dh.gov.uk/Home/fs/en

Funder(s)

Funder type

Government

Funder Name

University Hospital Birmingham NHS Trust (UK)

Funder Name

NHS R&D Support Funding

Results and Publications

Publication and dissemination plan

Not provided at time of registration

Intention to publish date

Individual participant data (IPD) sharing plan

IPD sharing plan summary

Not provided at time of registration

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Results article	results	18/01/2011		Yes	No