

To determine whether a low-dosage, digital X-ray scanning (LODOX-Statscan) can detect kidney stones in order to reduce radiation dosage

Submission date	Recruitment status	<input type="checkbox"/> Prospectively registered
13/11/2014	No longer recruiting	<input type="checkbox"/> Protocol
Registration date	Overall study status	<input type="checkbox"/> Statistical analysis plan
10/12/2014	Completed	<input checked="" type="checkbox"/> Results
Last Edited	Condition category	<input type="checkbox"/> Individual participant data
23/10/2020	Urological and Genital Diseases	

Plain English summary of protocol

Background and study aims

Kidney stones are stone-like lumps that can develop in one or both of the kidneys. We are carrying out a study of 30 patients presenting in the emergency department for kidney stones. We want to find out whether a technique of X-ray scanning requiring only about one-third of the radiation dose used for normal X-ray, called LODOX, can detect kidney stones. Our goal is to eventually reduce the radiation dosage needed for kidney stone detection and follow-up.

Who can participate?

Adults over 18, presenting in our emergency department for kidney stones.

What does the study involve?

Patients receive a LODOX-Statscan in our emergency department after the existence of kidney stones has been proved by computed tomography (CT) scan.

What are the possible benefits and risks of participating?

There will be no immediate direct benefit to those taking part, but if our study shows that kidney stones really can be found by LODOX-Statscan, in future a LODOX could replace the conventional radiography. This means that future patients will benefit from the lower radiation dosage of the LODOX. Radiation dosage is an issue because radiation is known for its potential of causing cancer. The main risk is the additional radiation dose of the LODOX. However, the dose is very small.

Where is the study run from?

The study has been set up by the Urology Department of the University of Bern (Switzerland).

When is the study starting and how long is it expected to run for?

It is anticipated that recruitment will start in November 2014. Participants will be enrolled on the study for a period of six months.

Who is funding the study?

University Clinic of Urology (Urologische Universitaetsklinik) (Switzerland).

Who is the main contact?

Dr Stefanie Hnilicka

urology.berne@insel.ch

Contact information

Type(s)

Scientific

Contact name

Dr Stefanie Hnilicka

Contact details

Anna-Seiler-Haus

Inselspital

Bern

Switzerland

3010

Additional identifiers

Protocol serial number

N/A

Study information

Scientific Title

A pilot study to evaluate if low-dosage, digital X-ray scanning (LODOX-Statscan) can detect ureteral stones

Acronym

N/A

Study objectives

It is hypothesised that ureteral stones are visible in low-dosage, digital X-ray scanning (LODOX-Statscan) and that stone detection with LODOX is superior compared to conventional radiography while requiring lower radiation dosage.

Ethics approval required

Old ethics approval format

Ethics approval(s)

Ethical Committee of the Canton Bern, Switzerland, 11/2013, ref: 156/12

Study design

Pilot study

Primary study design

Observational

Study type(s)

Diagnostic

Health condition(s) or problem(s) studied

Kidney and ureteral stones/reducing radiation dosage

Interventions

CT scan in all patients. A low-dosage, digital X-ray scanning (LODOX-Statscan) requiring a radiation dose of about 80 µSv will be performed in all participants. Total duration of intervention: approximately 5 minutes.

Intervention Type

Other

Primary outcome(s)

Stone detection rate by LODOX

Key secondary outcome(s))

1. Reducing radiation dosage
2. Comparability of stone size measured in LODOX, CT and conventional radiography
3. Fine-tuning adjustment of LODOX

Completion date

20/05/2015

Eligibility

Key inclusion criteria

1. Patients with kidney or ureteral stones proved by computed tomography (CT)
2. > 18 years
3. Written informed consent

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Adult

Lower age limit

18 years

Sex

All

Total final enrolment

41

Key exclusion criteria

1. Persistent, analgetic resistant pain
2. Pregnancy

Date of first enrolment

20/11/2014

Date of final enrolment

20/05/2015

Locations

Countries of recruitment

Switzerland

Study participating centre

Anna-Seiler-Haus

Bern

Switzerland

3010

Sponsor information

Organisation

University Clinic of Urology (Urologische Universitaetsklinik) (Switzerland)

ROR

<https://ror.org/01q9sj412>

Funder(s)

Funder type

University/education

Funder Name

University Clinic of Urology (Urologische Universitaetsklinik) (Switzerland)

Results and Publications

Individual participant data (IPD) sharing plan

IPD sharing plan summary

Not provided at time of registration

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
<u>Results article</u>	results	01/04/2020	06/06/2019	Yes	No