Neural effects of exercise, diet and sleep

Submission date	Recruitment status No longer recruiting	[X] Prospectively registered	
Registration date	Overall study status	 Statistical analysis plan 	
16/11/2015	Completed	[] Results	
Last Edited 30/12/2022	Condition category Mental and Behavioural Disorders	 Individual participant data Record updated in last year 	

Plain English summary of protocol

Background and study aims

The brain of a child and that of an adult are organised very differently. In adolescence the brain undergoes extensive remodelling, maturing and building connections. It is during this time that the cerebral cortex (the folded, outer part of the brain) undergoes extensive changes, marking the development of complex thinking processes, increasing a persons' capacity for learning. There are many known benefits of taking part in regular physical activity for the body, but there is a good deal of evidence that it is also valuable for healthy cerebral development. Despite this, teenagers are becoming increasingly inactive, many becoming overweight or obese. Many studies have shown that cognitive function (mental abilities such as thinking, reasoning, memory and attention) is improved after taking part in exercise in children, boosting academic performance. The aim of this study is to find out whether taking part in high-intensity exercise will help to improve cognitive function and learning in adolescents.

Who can participate?

Healthy adolescents aged between 15 and 19 who attend a participating high school or vocational school.

What does the study involve?

Participants are randomly allocated to one of two groups. Those in the first group take part in three 20 minute exercise sessions every week during school hours. In these sessions, participants complete a warm up (low intensity), and then high intensity interval running exercise such as running or circuit training, followed by a short low intensity cool down. Those in the second group continue with their usual exercise regime and have no extra training sessions. At the start of the study and then again after one months, participants in both groups have a scan to test their brain activity, as well as completing a number of tests to find out if there has been any change to their cognitive function. A subgroup of the study population also have a scan to test their brain activity before and after a single high intensity interval exercise to study the effects of acute exercise on brain functioning.

What are the possible benefits and risks of participating?

Participants will benefit from taking part in the study are they will be able to receive detailed information about their health and fitness levels, as well as feedback about any changes they could make to improve. There is a small risk of injury during the exercise training, although measures will be taken to prevent this.

Where is the study run from? University of Jyväskylä (Finland)

When is the study starting and how long is it expected to run for? January 2015 to December 2018

Who is funding the study? Jenny and Antti Wihuri Foundation (Finland)

Who is the main contact? Dr Eero Haapala

Contact information

Type(s) Scientific

Contact name Dr Eero Haapala

ORCID ID http://orcid.org/0000-0001-5096-851X

Contact details Sport and Exercise Medicine Faculty of Sport and Health Sciences PO-Box 35 (VIV) University of Jyväskylä Jyväskylä Finland 40014

Additional identifiers

EudraCT/CTIS number

IRAS number

ClinicalTrials.gov number

Secondary identifying numbers N/A

Study information

Scientific Title

High-intensity exercise training intervention study to improve cognitive functions and learnining in adolescents

Acronym

NEEDS

Study objectives

High-intensity and low-volume exercise intervention will improve cognitive function and learning in the study group compared to the control group during the three month intervention period.

Ethics approval required Old ethics approval format

Ethics approval(s) Ethics committee of University of Jyväskylä, 25/08/2015

Study design Current study design: Single-centre single-blind parallel controlled cross-over study

Previous study design: Single-centre single-blind cluster-randomized controlled trial

Primary study design Interventional

Secondary study design Non randomised study

Study setting(s) School

Study type(s) Other

Participant information sheet

Not available in web format, please use the contact details below to request a patient information sheet.

Health condition(s) or problem(s) studied

Cognition, learning, brain function

Interventions

Current Interventions as of 17/03/2017: Participants are allocated to the intervention group or the control group.

Intervention group: Participants take part in high-intensity and low volume exercise training during school days. The aim of the exercise intervention is to provide three short (approximately 20 minute) exercise sessions weekly and to improve cardio-respiratory fitness, totaling in all 12 sessions over the 1-month intervention period. As a training mode high intensity running will be adopted. The protocol includes 3 minute warm-up at light to moderate intensity and eight to twelve repeated bouts of 0.5 to 1 minute at 90% to 100% of the capacity of the participants interspersed by 75–90 second recovery at light intensity, followed by 3 minute recovery period at light to moderate intensity.

In the sub-study, the participants participate in three brain scans. First scan is performed two weeks before second visit to the laboratory. During the second visit, the participants perform a brain scan before and after the acute high intensity interval exercise. The exercise is performed using mechanically braked cycle ergometer. The exercise protocol include eight 30-second maximal intensity exercise bouts interspersed by 90-second active recovery.

Control Group: Participants will continue their usual physical activity behavior without supervised exercise by the study.

There is no follow-up planned.

Previous Interventions:

Participants are randomly allocated to the intervention group or the control group.

Intervention group: Participants will take part in high-intensity and low volume exercise training during school days. The aim of the exercise intervention is to provide three short (approximately 20 minute) exercise sessions weekly and to improve cardio-respiratory fitness and motor performance, totaling in all 24 sessions over the 2-month intervention period. As a training mode high intensity running and circuit training will be adopted. The protocol includes 3 minute warm-up at light to moderate intensity and eight to twelve repeated bouts of 1 minute at 90% to 100% of the capacity of the participants interspersed by 75–90 second recovery at light intensity, followed by 3 minute recovery period at light to moderate intensity.

Control Group: Participants will continue their usual physical activity behavior without supervised exercise by the study.

After the intervention period, the participants will be followed-up until the end of vocational and high school for approximately for two years (from baseline) but no intervention is provided during follow-up.

Intervention Type

Behavioural

Primary outcome measure

Current primary outcome measures as of 17/03/2017:

1. Attention, working memory, associative learning, processing speed and executive function is measured using the computerized CogState battery at the baseline and at the 3 months 2. Brain functions by magnetoencephalography (MEG) in a subsample of participants taking part in sub study investigating the effects of acute high intensity interval training on cognition and brain functioning.

Previous primary outcome measures:

 Attention, working memory, associative learning, processing speed and executive function is measured using the computerized CogState battery at the baseline and at the 3 months
 Reading and arithmetic skills are measured using pseudo word reading and KTLT tests, respectively, at the baseline and at the 3 months

3. Brain functions by magnetoencephalography (MEG) at baseline and 3 months

Secondary outcome measures

Current secondary outcome measures as of 17/03/2017:

1. Cardiorespiratory fitness is measured using maximal cycle ergometer test with respiratory gas analyses at baseline and 3 months

2. Physical activity is measured using PA-3D accelerometer, the Youth Physical Activity Questionnaire and the Youth Sedentary Behaviour questionnaire at baseline and 3-months 3. Sleep length and quality is measured using the Epworth sleepiness scale and Basic Nordic Sleep Questionnaire at baseline and 3 months

4. Arterial stiffness is measured using an Arteriograph at baseline and 3 months
5. Motivation is measured using a questionnaire developed by Professor Niemivirta in the 2002 study "Motivation and performance in context: The influence of goal orientations and instructional setting on situational appraisal and task performance" at baseline and 3 months
6. Self-efficacy is measured using a questionnaire developed by Professor Niemivirta in the 2002 study "Motivation and performance in context: The influence of goal orientations and instructional setting on situational appraisal and task performance" at baseline and 3 months
7. Depression is measured using the 21 item Beck Depression Scale at baseline and 3 months

Previous secondary outcome measures:

1. Cardiorespiratory fitness is measured using maximal cycle ergometer test with respiratory gas analyses at baseline and 3 months

 Physical activity is measured using PA-3D accelerometer, the Youth Physical Activity Questionnaire and the Youth Sedentary Behaviour questionnaire at baseline and 3-months
 Sleep length and quality is measured using the Epworth sleepiness scale and Basic Nordic Sleep Questionnaire at baseline and 3 months

4. Arterial stiffness is measured using an Arteriograph at baseline and 3 months 5. Adiposity is measured using dual-energy x-ray absorbtiomerty at baseline and using bioimpedance device at baseline and 3 months

6. Motivation is measured using a questionnaire developed by Professor Niemivirta in the 2002 study "Motivation and performance in context: The influence of goal orientations and instructional setting on situational appraisal and task performance" at baseline and 3 months 7. Self-efficacy is measured using a questionnaire developed by Professor Niemivirta in the 2002 study "Motivation and performance in context: The influence of goal orientations and instructional setting on situational appraisal and task performance" at baseline and 3 months 8. Depression is measured using the 21 item Beck Depression Scale at baseline and 3 months

Overall study start date

11/01/2015

Completion date 30/12/2018

Eligibility

Key inclusion criteria Current inclusion criteria as of 17/03/2017:

Aged 15-19 years of age
 Attending high school and vocational schools

Previous inclusion criteria:

1. Aged 15-17 years of age

2. Attending high school and vocational schools

Participant type(s) Healthy volunteer

Age group

Child

Lower age limit 15 Years

Upper age limit

19 Years

Sex Both

Target number of participants 30-40

Key exclusion criteria

- 1. Heart disease
- 2. Untreated or poorly controlled type 1 diabetes
- 3. Musculoskeletal disease or trauma
- 4. Severe depression or anxiety

Date of first enrolment 01/12/2015

Date of final enrolment 30/03/2017

Locations

Countries of recruitment Finland

Study participating centre University of Jyväskylä Department of Biology of Physical Activity Jyväskylä Finland FI-40014

Sponsor information

Organisation University of Jyväskylä

Sponsor details

Department of Biology of Physical Activity PL 35 Jyväskylä Finland 40014

Sponsor type University/education

ROR https://ror.org/05n3dz165

Funder(s)

Funder type Charity

Funder Name Jenny ja Antti Wihurin Rahasto

Alternative Name(s) Jenny JA Antti Wihurin Rahasto sr, Jenny and Antti Wihuri Foundation

Funding Body Type Private sector organisation

Funding Body Subtype Trusts, charities, foundations (both public and private)

Location Finland

Funder Name Päivikki and Sakari Sohlberg Foundation

Results and Publications

Publication and dissemination plan

Planned publication to a peer reviewed journal in the form of a preliminary results paper and a main results paper.

Intention to publish date 30/06/2018

Individual participant data (IPD) sharing plan

Not provided at time of registration

IPD sharing plan summary

Not provided at time of registration

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Other publications		01/09/2020	30/12/2022	Yes	No