Evaluation of autoSCORE: an artificial intelligence based algorithm for EEG classification versus human experts

Submission date	Recruitment status	Prospect
		[X] Protoco
25/03/2022	Overall study status Completed	[X] Results
Last Edited 05/09/2023	Condition category Nervous System Diseases	[_] Individua

tively registered

- al analysis plan
- al participant data

Plain English summary of protocol

Background and study aims

Electroencephalography (EEG) measures electric brain activity using electrodes attached to the scalp. This is used to investigate brain disease, most commonly epilepsy, coma, and dementia. The clinical interpretation of EEGs is until now mainly based on expert visual analysis, and there are indications that EEG reviewers are under increasing time pressure. A large, anonymized dataset consisting of EEGs evaluated and annotated by experts with a dedicated software package (SCORE EEG) is used to train an algorithm (autoSCORE) to automatically assess EEGs. autoSCORE is trained to separate normal from abnormal EEGs. When autoSCORE assesses the EEG as abnormal it will further sub-classify abnormalities into four sub-groups, which provide important information for medical decisions on patient management. This is a human expert validation study to validate the algorithm.

Who can participate?

This study involves analysis of recorded electroencephalography data. Direct participation of new patients is not required.

What does the study involve?

Doctors will assess 100 EEGs and the algorithm will assess the same EEGs. A large independent EEG dataset from Oslo University Hospital will be used to compare autoSCORE with the clinical scorings of the experts who evaluated the EEGs. The goal is to prove that the autoSCORE algorithm is non-inferior to human experts. The researchers will compare autoSCORE with a commercially available EEG analysis software package (ENCEVIS).

What are the possible benefits and risks of participating?

As the study involves analysis of the EEG data of patients who were referred to the investigation as part of their diagnostic work-up, there are no additional risks for the patients. EEG is a noninvasive procedure without any risks. The benefits are EEG diagnostics will become available also in underserved areas where EEG experts are not available, and it will assist physicians in reducing their workload in places where the expertise is available.

Where is the study run from?1. Danish Epilepsy Centre Filadelfia (Denmark)2. Haukeland University Hospital (Norway)3. Oslo University Hospital (Norway)4. Mayo Clinic (USA)

When is the study starting and how long is it expected to run for? June 2020 to March 2022

Who is funding the study? Holberg EEG (Norway)

Who is the main contact? Prof. Sandor Beniczky sbz@filadelfia.dk

Contact information

Type(s) Principal Investigator

Contact name Prof Sandor Beniczky

ORCID ID http://orcid.org/0000-0002-6035-6581

Contact details Visby Allé 5 Dianalund Denmark 4293 +45 (0)26981536 sbz@filadelfia.dk

Additional identifiers

EudraCT/CTIS number Nil known

IRAS number

ClinicalTrials.gov number Nil known

Secondary identifying numbers 24084-01

Study information

Scientific Title

Accuracy of EEG classification by autoSCORE algorithm compared with human experts

Acronym autoSCORE

Study objectives

The autoSCORE algorithm has an accuracy similar to human experts in distinguishing abnormal from normal electroencephalography (EEG) recordings and classifying the abnormal recordings: focal-epileptiform, generalized-epileptiform, focal-slowing, diffuse-slowing.

AutoSCORE is an algorithm developed using artificial intelligence, based on a large SCORE dataset. The validation process is prospective, i.e. after the development of the algorithm, using a fixed algorithm and threshold (cut-off) value.

Ethics approval required

Old ethics approval format

Ethics approval(s)

This study uses anonymized EEG datasets and does not require ethics approval. The study has been reviewed on 07/07/2020 by the institutional review board and the data safety officer at the institution of the Principal Investigator, the Danish Epilepsy Centre, Filadelfia (Kolonivej 1, 4293, Dianalund, Denmark; +45 (0)58264200; pwo@filadelfia.dk), ref: Sagsnr. 0100256

Study design

Cross-sectional validation study

Primary study design Observational

Secondary study design Cross sectional study

Study setting(s) Hospital

Study type(s) Diagnostic

Participant information sheet Not applicable

Health condition(s) or problem(s) studied

Patients suspected of epilepsy or other conditions with impaired consciousness or cognition

Interventions

EEGs will be automatically assessed by the previously developed autoSCORE algorithm using predefined detection thresholds. The algorithm first distinguishes between normal and abnormal recordings. Then, it classifies the abnormal EEGs into four categories: focal-epileptiform, generalized-epileptiform, focal-slowing, diffuse-slowing. The performance of autoSCORE will be compared with the evaluation of the EEGs by a panel of experts on an independent dataset of a balanced sample of 100 randomly selected EEGs and form a large independent dataset from a hospital that did not participate in the development of the algorithm.

Intervention Type

Other

Primary outcome measure

Sensitivity, specificity, accuracy, positive predictive value, negative predictive value of autoSCORE compared with the majority-consensus scoring of the human experts, calculated using a balanced sample of 100 randomly selected EEGs at a single timepoint

Secondary outcome measures

Calculated using a balanced sample of 100 randomly selected EEGs at a single timepoint: 1. Inter-test agreement (autoSCORE vs human experts) in the large, independent dataset 2. Performance of autoSCORE at identifying recordings with epileptiform abnormalities (both focal and generalized) compared with the commercially available spike-detector software packages

Overall study start date

01/06/2020

Completion date

18/03/2022

Eligibility

Key inclusion criteria

The EEGs to be selected for this study have not been part of the training dataset to develop the autoSCORE. The datasets are distributed between the EEGs arriving from Haukeland University Hospital, Danish Epilepsy Centre Filadelfia and Mayo Clinic. Although there is no scientific reason to consider that ethnicities or geographical origin of the EEG, nor the software used for acquisition influences the results, in order to avoid any such potential bias, the study design has addressed this by using EEGs from different geographies. Age range: 35% under 16 years (pediatric population), 65% over 16 years (adult population).

Participant type(s)

Patient

Age group Mixed

Sex Both

Target number of participants 100

Total final enrolment

100

Key exclusion criteria1. Neonatal2. EEGs reported with rhythmic and periodic patterns in critically ill patients

Date of first enrolment 01/06/2021

Date of final enrolment 18/03/2022

Locations

Countries of recruitment Denmark

Norway

United States of America

Study participating centre Danish Epilepsy Centre Filadelfia Kolonivej 1 Dianalund Denmark 4293

Study participating centre Haukeland University Hospital Haukelandsveien 22 Bergen Norway 5009

Study participating centre Mayo Clinic, Florida 4500 San Pablo Rd S Jacksonville United States of America FL 32224

Sponsor information

Organisation Holberg EEG AS

Sponsor details Fjøsangerveien 70 A Bergen Norway 5068 +47 (0)926 44 261 shelley.cam@holbergeeg.com

Sponsor type Industry

Website https://www.holbergeeg.com/

Funder(s)

Funder type Industry

Funder Name Holberg EEG AS

Results and Publications

Publication and dissemination plan

Planned publication in a high-impact peer-reviewed journal.

Intention to publish date

09/09/2023

Individual participant data (IPD) sharing plan

Additional information, including raw data, is available on request, pending IRB approval for the intended use. Please contact Prof. Sandor Beniczky (sbz@filadelfia.dk). Type of data: anonymised EEG, diagnostic gold standard; demographics (age, gender), output of the algorithm. Data will be available upon request for 10 years from the publication for scientific non-commercial use. As the dataset is de-identified, there is no need for consent from the participants.

IPD sharing plan summary Available on request

Study outputs								
Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?			
<u>Protocol file</u>	version 4	28/02/2022	24/03/2022	Νο	No			
Results article		01/08/2023	05/09/2023	Yes	No			