Does paraxanthine provide greater improvement in cognitive function than caffeine or in combination with caffeine prior to and following running?

Submission date	Recruitment status No longer recruiting	Prospectively registered		
01/01/2022		☐ Protocol		
Registration date 04/01/2022	Overall study status Completed	Statistical analysis plan		
		[X] Results		
Last Edited	Condition category	Individual participant data		
17/05/2024	Other			

Plain English summary of protocol

Background and study arms

Paraxanthine (PX) is a natural dietary component that can be found in different parts of Theobroma cacao (cocoa tree) fruits, in Coffea arabica (coffee plant), in Sinomenium actum (a traditional Chinese herbal medicine), and in citrus flowers. PX is the major metabolite (breakdown product) of caffeine (CA) in humans and is less toxic than caffeine. One-time ingestion of as little as 50 mg PX has been shown to improve cognition, short-term memory and helps to sustain attention. However, if paraxanthine is more effective than CA, or has synergistic effects when combined with CA, is currently unknown. The aim of this study is to measure the effects of paraxanthine with and without caffeine and compared to CA on brain function.

Who can participate?

Healthy males and females between the ages of 18 to 40 years

What does the study involve?

Participants will perform two cognitive function tests that assess a range of cognitive and executive function aspects. Then participants will be randomly allocated to receive PX, CA, PX+CA or placebo (dummy) capsules, and then perform the same cognitive function tests. Following a 10-kilometer run, participants will perform the same cognitive function tests a third time.

What are the possible benefits and risks of participating?

The potential benefit of participating is an increase in executive functioning. Paraxanthine is self-affirmed GRAS (generally recognized as safe) and studies have shown PX is less toxic than CA.

Where is the study run from? Texas A&M University (USA)

When is the study starting and how long is it expected to run for? July 2019 to May 2021

Who is funding the study? Ingenious Ingredients L.P. (USA)

Who is the main contact? Richard B. Kreider rbkreider@tamu.edu

Contact information

Type(s)

Scientific

Contact name

Prof Richard Kreider

ORCID ID

http://orcid.org/0000-0002-3906-1658

Contact details

Texas A&M University 675 Kimbrough Blvd. Building #1542 College Station, TX United States of America 77843-4253 +1 (0)979 458 1498 rbkreider@tamu.edu

Additional identifiers

EudraCT/CTIS number

Nil known

IRAS number

ClinicalTrials.gov number

Nil known

Secondary identifying numbers

0454E

Study information

Scientific Title

Effects of ParaXanthine supplementation with and without CAffeine on executive Function (PXCAF)

Acronym

PXCAF

Study objectives

Paraxanthine, the main metabolite of caffeine in humans, is an effective nootropic agent at doses as low as 50 mg. However, if paraxanthine shows greater beneficial effects on cognition compared to caffeine, or synergistic effects when combined with caffeine is currently unknown.

Ethics approval required

Old ethics approval format

Ethics approval(s)

Approved 04/12/2019, Texas A&M University Institutional Review Board (517 Blocker Building, 155 Ireland Street, Texas A&M University, College Station, TX 778431, USA; +1 (0)979 458 4067; irb@tamu.edu), ref: IRB2019-0928

Study design

Interventional double-blind randomized crossover controlled trial

Primary study design

Interventional

Secondary study design

Randomised cross over trial

Study setting(s)

Other

Study type(s)

Other

Participant information sheet

No participant information sheet available

Health condition(s) or problem(s) studied

Executive functioning in healthy individuals

Interventions

Subjects consume capsules containing 400 mg of placebo (PL); or 200 mg of PL + 200 mg of caffeine (CA); or 200 mg of PL+ 200 mg of PX (ENFINITY™, Ingenious Ingredients, Lewisville, TX, USA); or 200 mg CA + 200 mg of PX (CA+PX) with a 7 − 14 day washout between treatments. Capsules are taken with 8 ounces of water. A computer-generated randomization to treatment is used. Once subjects are randomized to start, they follow the counterbalance progression.

Procedure for each treatment period:

Upon arriving at the lab, participants had weight, resting heart rate, and blood pressure determined. Participants then completed a side effects questionnaire, performed cognitive function tests, donated a fasting blood sample, and then ingested 1 of 4 randomly assigned oral supplements (PRE). Participants then rested for 15-minutes and repeated these tests. Volunteers then performed a 10-km run time-trial at their self-determined pace.

Intervention Type

Supplement

Primary outcome measure

The Psychology Experiment Building Language (PEBL) software program (Version 2.1, http://pebl.sourceforge.net) was used to administer four cognitive function tests that assessed a range of cognitive and executive function aspects:

- 1. Berg-Wisconsin Card Sorting Task test (BCST) at baseline, 1 hour after initial ingestion and after the completion of a 10-kilometer run.
- 2. Psychomotor Vigilance Task Test (PVTT) at baseline, 1 hour after initial ingestion and after the completion of a 10-kilometer run.

Secondary outcome measures

Safety measured using:

- 1. Side Effect Questionnaire at baseline, 1 hour after initial ingestion and after the completion of a 10-kilometer run.
- 2. Changes in blood clinical chemistries at baseline, 1 hour after initial ingestion and after the completion of a 10-kilometer run.
- 3. Changes in heart rate after initial ingestion and after each kilometer runing.

Overall study start date

01/07/2019

Completion date

01/05/2021

Eligibility

Key inclusion criteria

All subjects were healthy and free from known: (1) a medical condition which hinders performance in a standard exercise program; (2) a history of cognitive dysfunction; (3) been currently taking prescription medications; (4) a known allergy to wheat flour; (5) a sleep disorder; (6) been/were pregnant or breastfeeding; or (7) a physician's order to abstain/restrict caffeine or stimulant intake

Participant type(s)

Healthy volunteer

Age group

Adult

Sex

Both

Target number of participants

13

Total final enrolment

13

Key exclusion criteria

Subjects who were taking prescription medications in the month prior to the initiation of the study and/or were told by a physician to abstain or restrict physical exercise, caffeine and/or stimulant intake

Date of first enrolment 01/01/2020

Date of final enrolment 28/02/2021

Locations

Countries of recruitment

United States of America

Study participating centre
Texas A&M University
675 Kimbrough Blvd. Building #1542
College Station
United States of America
77843-4253

Sponsor information

Organisation

Ingenious Ingredients L.P.

Sponsor details

2560 King Arthur Blvd. Suite 124-74 Lewisville, TX United States of America 75056 +1 704 619 1692 info@ingeniousingredients.com

Sponsor type

Industry

Website

http://www.ing2.com

Funder(s)

Funder type

Industry

Funder Name

Ingenious Ingredients, L.P.

Results and Publications

Publication and dissemination plan

Planned publication in a peer-reviewed scientific journal.

Intention to publish date

30/06/2022

Individual participant data (IPD) sharing plan

All data generated or analysed during this study will be included in the subsequent results publication. Please contact Prof. Dr Richard Kreider (rbkreider@tamu.edu) with any requests.

IPD sharing plan summary

Available on request, Published as a supplement to the results publication

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Results article		09/05/2024	17/05/2024	Yes	No