

Changes in cardiovascular magnetic resonance images by using magnetic resonance imaging scanner at different sites

Submission date	Recruitment status	<input type="checkbox"/> Prospectively registered
16/11/2020	No longer recruiting	<input type="checkbox"/> Protocol
Registration date	Overall study status	<input type="checkbox"/> Statistical analysis plan
30/12/2020	Completed	<input checked="" type="checkbox"/> Results
Last Edited	Condition category	<input type="checkbox"/> Individual participant data
14/01/2026	Circulatory System	

Plain English summary of protocol

Background and study aims

The techniques for cardiac magnetic resonance imaging (MRI) are established worldwide and the quantification of heart function (in pumping blood around the body) and the volume of the chambers of the heart. MRI is now part of routine clinical examinations. Nevertheless, there are still location-related differences in the way these images are captured and in analysing the results.

Furthermore, in addition to the established measurements for determining the function of the heart muscle, there have recently been new approaches to characterizing the heart muscle and for seeing and calculating the dynamics of blood flow.

In order to perform larger studies that involve multiple different sites, there is a need to standardize MRI techniques and to establish new innovative techniques. This will also enable patients in a clinical setting to change their diagnostic center without the risk of loss or misinterpretation of results.

Who can participate?

Adult healthy volunteers, and adult patients with hemodynamic pathologies (such as aortic stenosis, hypertrophic cardiomyopathy, hypertensive heart disease, aortic insufficiency, and connective tissue disease of the aorta) or systemic disease (such as heart failure with preserved ejection fraction, muscular dystrophy, and inflammatory heart disease)

What does the study involve?

20 healthy volunteers will have an MRI scan of the heart at 5 different sites to establish and standardize the measurements for function, heart muscle composition, and blood flow dynamics. The images for each individual between the 5 sites will be used to identify differences in imaging and to identify factors influencing the capture and evaluation of these images. By identifying potential factors, these differences may then be reduced. In the case where influencing factors cannot be avoided, algorithms will be created so that a comparison of the measurements of the different MRI devices will be standardised across all 5 locations.

800 patients with certain heart diseases who have undergone an MRI scan at a single site will have their images analysed. For these patients abnormalities of the measurements are expected as a result of their illness. As these diseases are not common, a sufficient number of patients can only be recruited through multicenter studies. The precision and accuracy of the MRI measurements for these patients will be assessed.

What are the possible benefits and risks of participating?

All participants will get a functional analysis of their heart. As the access to cardiac MRI is still limited, this provides additional information for the participants. The risks are relatively low, as there are only a few side effects known (such as dizziness) that can occur during a cardiac MRI scan when complying with the inclusion and exclusion criteria. In case of adverse events such as dizziness during the scan, the scan can be interrupted at any time or at the volunteer's request. After leaving the scanner, the dizziness usually fades without needing any further intervention. No contrast agent or other drug is administered during the study.

Where is the study run from?

Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center (ECRC) cooperation between the Charité University Medicine Berlin (Germany) and the Max-Delbrueck Center for Molecular Medicine (Germany), and HELIOS Klinikum Berlin Buch (Germany)

When is the study starting and how long is it expected to run for?

From January 2019 to July 2024

Who is funding the study?

German Centre for Cardiovascular Research (DZHK) (Germany)

Who is the main contact?

Prof Jeanette Schulz-Menger
stephanie.wiesemann@charite.de

Contact information

Type(s)

Scientific

Contact name

Prof Jeanette Schulz-Menger

ORCID ID

<https://orcid.org/0000-0003-3100-1092>

Contact details

Charité University Medicine Berlin Campus Buch

Working Group Kardiale MRT

Lindenberger Weg 80

Berlin

Germany

13125

+49-30-450540617

stephanie.wiesemann@charite.de

Additional identifiers

Clinical Trials Information System (CTIS)

Nil known

ClinicalTrials.gov (NCT)

Nil known

Protocol serial number

DZHK study (internal study code)

Study information

Scientific Title

Evaluation of the precision and accuracy of quantifications of cardiovascular magnetic resonance imaging exams

Study objectives

There is no difference in quantitative parameters of cardiovascular magnetic resonance imaging at magnetic resonance imaging scanner at different sites in healthy volunteers and patients with certain pathologies.

Ethics approval required

Old ethics approval format

Ethics approval(s)

Approved 05/09/2019, the ethical board of Charité – Berlin University of Medicine (Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany; +49 30 450 517222; ethikkommission@charite.de), ref: EA1/183/19

Study design

Multi-centre observational cohort study

Primary study design

Observational

Study type(s)

Diagnostic

Health condition(s) or problem(s) studied

Cardiac disease, aortic stenosis, hypertrophic cardiomyopathy, hypertensive heart disease, aortic insufficiency, connective tissue disease of the aorta, heart failure with preserved ejection fraction, muscular dystrophy, inflammatory heart disease

Interventions

Healthy volunteers will have 5 cardiac MRI exams (at each different centre) and patients will each have 1 cardiac MRI exam. The study will use different imaging techniques for measurements of function, volumes, mass, and hemodynamics (forward, backward flow, regurgitation fraction, and wall shear stress) of the heart and myocardial tissue differentiation

(T1-weighted, T2-weighted, T2*-weighted times, fat-water- measurements, spectroscopy). All scanners are 3 Tesla scanners by Siemens (Siemens Healthineers, Erlangen, Germany).

Intervention Type

Procedure/Surgery

Primary outcome(s)

1. Quantitatively detectable cardiovascular MRI measurement methods of function, volumes, mass, hemodynamics (forward, backward flow, regurgitation fraction, wall shear stress) and myocardial differentiation (T1, T2, T2 * times, fat-water- measurements, spectroscopy) on the MRI scanner of the different sites measured through analysis of MRI scans taken at baseline

Key secondary outcome(s)

1. Quantitatively detectable cardiovascular MRI measurement methods of the function volumes, mass, hemodynamics (forward, reverse flow, regurgitation fraction, wall shear stress) and myocardial differentiation (T1, T2, T2 * times, fat-water images, spectroscopy) for MRI investigations carried out twice in a row at the same location measured through analysis of MRI scans taken at baseline

2. Image quality measured as a semiquantitative score, as well as a calculation of contrast-to-noise and signal-to-noise ratio of the measurements on the MRI scanner at the different sites measured through analysis of MRI scans taken at baseline

3. Duration (min) of acquisition on the MRI scanner at the different sites measured through analysis of MRI scans taken at baseline

Completion date

31/07/2024

Eligibility

Key inclusion criteria

1. Aged >18 years

2. Written consent

3. Healthy volunteers, patients with hemodynamic pathologies (aortic stenosis, hypertrophic cardiomyopathy, hypertensive heart disease, aortic insufficiency, and connective tissue disease of the aorta), or systemic disease (heart failure with preserved ejection fraction, muscular dystrophy, and inflammatory heart disease)

Participant type(s)

Healthy volunteer, Patient

Healthy volunteers allowed

Yes

Age group

Mixed

Lower age limit

18 years

Upper age limit

100 years

Sex

All

Total final enrolment

0

Key exclusion criteria

1. Healthy volunteers with any known cardiac disease
2. Contraindication to cardiovascular magnetic resonance

Date of first enrolment

01/08/2020

Date of final enrolment

01/06/2023

Locations

Countries of recruitment

Germany

Study participating centre

Charité Campus Benjamin Franklin
Neurology Department
Lindenberger Weg 80
Berlin
Germany
13125

Study participating centre

Charité Campus Mitte
Neuroscience Department
Charitépl. 1,
Berlin
Germany
10117

Study participating centre

Charité Campus Virchow Klinikum
Augustenburger Pl. 1
Berlin
Germany
13353

Study participating centre

Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center (ECRC)
Charitépl. 1
Berlin
Germany
10117

Study participating centre

HELIOS Klinikum Berlin Buch
Department of Cardiology and Nephrology
Schwanebecker Chaussee 50
Berlin
Germany
13125

Sponsor information

Organisation

Charité

ROR

<https://ror.org/001w7jn25>

Funder(s)

Funder type

Research organisation

Funder Name

Deutsches Zentrum für Herz-Kreislaufforschung

Alternative Name(s)

German Centre for Cardiovascular Research, DZHK Germany, Zentrum HerzKreislaufForschung, Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Deutsches Zentrum für Herz-Kreislaufforschung e.V., DZHK, DZHK e.V.

Funding Body Type

Government organisation

Funding Body Subtype

Research institutes and centers

Location

Germany

Results and Publications

Individual participant data (IPD) sharing plan

IPD sharing plan summary

Not expected to be made available

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
<u>Results article</u>		17/10/2025	21/10/2025	Yes	No
<u>Results article</u>	Validation, Reliability, Postprocessing	08/01/2026	14/01/2026	Yes	No
<u>Interim results article</u>	Results of parametric T1 and T2 mapping in healthy volunteers	14/08/2023	14/08/2023	Yes	No