# Are gut hormone changes the reason why the long-limb gastric bypass is more effective than the standard limb gastric bypass in improving type 2 diabetes mellitus?

| Submission date               | Recruitment status  No longer recruiting             | [X] Prospectively registered |  |  |
|-------------------------------|------------------------------------------------------|------------------------------|--|--|
| 29/07/2015                    |                                                      | ☐ Protocol                   |  |  |
| Registration date             | Overall study status Completed                       | Statistical analysis plan    |  |  |
| 30/07/2015                    |                                                      | [X] Results                  |  |  |
| <b>Last Edited</b> 18/08/2023 | Condition category Nutritional, Metabolic, Endocrine | Individual participant data  |  |  |

#### Plain English summary of protocol

Background and study aims

Obesity is the main cause of the world wide epidemic of diabetes. Weight loss, or bariatric, surgery produces major and sustained weight loss and is being increasingly used to treat obese diabetic patients. There was initial optimism that these procedures might cure all diabetes. However, the gold-standard operation, standard gastric bypass, effectively cures diabetes in only 4 out of 10 patients. To design a safer and more successful procedure we need to understand how bariatric surgery works to improve diabetes. Hormones from the gut are released when we eat food. They control how the body uses the food it absorbs. For example they release the sugar lowering hormone insulin, and also greatly reduce appetite, which is why one feels less hungry after eating a meal. We have discovered that the good effects of bariatric surgery, and in particular the gastric bypass, are mainly due to increased release of gut hormones, reducing patients appetite and improving the release of insulin. In this project we will be testing a new procedure called the long-limb gastric bypass. It is designed particularly to be better at helping the diabetes in overweight patients, while being as safe as the currently available standard gastric bypass. We now want to show that this new procedure works better than the standard gastric bypass by causing an even bigger increase in the release of gut hormones and therefore insulin.

#### Who can participate?

Obese adults (aged 18-70 years) with type 2 diabetes.

#### What does the study involve?

Participants are randomly assigned into one of two groups. Those in group 1 have a standard-limb gastric bypass. Those in group 2 have a long-limb gastric bypass. Using a newly developed technique (mass spectroscopy) we then measure the differences in gut hormone secretion between the new long-limb and the standard gastric bypass. We also use a well-tested insulin sensitivity procedure (glucose clamp), both to confirm and to investigate how and why each participants diabetes has improved after the surgery.

What are the possible benefits and risks of participating? The measurements we will be making are non-invasive and safe. The only discomfort comes from inserting a cannula to take blood samples.

Where is the study run from? Imperial College London, Hammersmith Hospital (lead centre) and King's College London (UK)

When is the study starting and how long is it expected to run for? August 2015 to February 2018

Who is funding the study? National Institute for Health Research (UK)

Who is the main contact? Dr Alex Miras

# **Contact information**

#### Type(s)

Public

#### Contact name

Dr Alex Miras

#### **ORCID ID**

https://orcid.org/0000-0003-3830-3173

#### Contact details

Hammersmith Hospital Du Cane Road London United Kingdom W12 0HS

#### Type(s)

Scientific

#### Contact name

Dr Belen Perez Pevida

#### Contact details

NIHR Imperial Clinical Research Facility
Imperial Centre for Translational and Experimental Medicine
Section of Investigative Medicine, Division of Diabetes, Endocrinology & Metabolism Imperial College London
London
United Kingdom
W12 0NN
N/A
belen.pevida@nhs.net

# Additional identifiers

#### Clinical Trials Information System (CTIS)

Nil known

#### ClinicalTrials.gov (NCT)

Nil known

#### Protocol serial number

19153

# Study information

#### Scientific Title

Are gut hormone changes the reason why the long-limb gastric bypass is more effective than the standard limb gastric bypass in improving type 2 diabetes mellitus? A randomised controlled trial

#### Acronym

**LONG LIMB** 

#### **Study objectives**

The aim of this study is to show that a new bariatric surgery, the long-limb gastric bypass, is more effective at treating diabetes in people with obesity than the standard-limb gastric bypass.

#### Ethics approval required

Old ethics approval format

#### Ethics approval(s)

West London & GTAC, 29/06/2015, ref: 15/LO/0813

## Study design

Randomized; Double blind; Interventional; Design type: Treatment

## Primary study design

Interventional

## Study type(s)

Treatment

## Health condition(s) or problem(s) studied

Topic: Diabetes; Subtopic: Type 2; Disease: Diabetic Control, Obesity

#### **Interventions**

Bariatric surgery, either the standard--limb or long--limb gastric bypass Study Entry: Registration and one or more randomisations

#### Intervention Type

Procedure/Surgery

#### Primary outcome(s)

Current primary outcomes as of 29/04/2019:

Peak plasma GLP-1 concentration as measured by laboratory assays at baseline and at 2 weeks after intervention.

Previous primary outcomes as of 10/01/2017:

Mechanistic primary outcome: Peak plasma GLP-1 level as measured by laboratory assays at baseline and at the point of 20% weight loss.

Clinical primary outcome: Glycated haemoglobin (HbA1c) as measured by laboratory assays at baseline and 1 year.

Previous primary outcome:

Change in peak GLP--1 level; Timepoint(s): After the mixed meal tolerance test.

#### Key secondary outcome(s))

Current secondary outcome measures as of 29/04/2019:

- 1. Plasma levels of glucose, insulin, c-peptide, gut hormones, bile acids, FGF-19 and 21 after the mixed meal tolerance test are measured using laboratory assays at baseline, within 2 weeks and at the point of 20% weight loss
- 2. Rate of glucose appearance (Ra) and disposal (Rd) in the euglycaemic hyperinsulinaemic clamp is measured using mass spectroscopy/metry at baseline, within 2 weeks and at the point of 20% weight loss.
- 3. Faecal caloric content is measured using calorimetry at baseline, 20% weight loss and at 1 year
- 4. 4. Blood, urine and faecal microbial diversity and metabolomics are measured using mass spectroscopy/metry at baseline, within 2 weeks and at the point of 20% weight loss.
- 5. Total caloric intake and macronutrient composition is measured using dietary records at baseline and at 1 year
- 6. HbA1c is measured using by laboratory assays at baseline and 1 year
- 7. Total number of medications are measured using health records at baseline and 1 year
- 8. Rate of patients achieving diabetes remission is measured using HbA1c and number of medications at 1 year
- 9. Body weight is measured using scales at baseline and 1 year
- 10. Systolic, diastolic blood pressure and pulse are measured using a sphygmomanometer at baseline and 1 year
- 11. Serum fasting lipids are measured using laboratory assays at baseline and 1 year
- 12. Medical, surgical, nutritional and psychological complications are measured using health records at 1 year
- 13. Adverse events are measured using health records at 1 year
- 14. Glycated haemoglobin (HbA1c) as measured by laboratory assays at baseline and 1 year.

#### Previous secondary outcome measures:

- 1. Plasma levels of glucose, insulin, c-peptide, gut hormones, bile acids, FGF-19 and 21 after the mixed meal tolerance test are measured using laboratory assays at baseline, within 2 weeks and at the point of 20% weight loss
- 2. Rate of glucose appearance (Ra) and disposal (Rd) in the euglycaemic hyperinsulinaemic clamp is measured using mass spectroscopy/metry at baseline, within 2 weeks and at the point of 20% weight loss.
- 3. Faecal caloric content is measured using calorimetry at baseline, 20% weight loss and at 1 year
- 4. 4. Blood, urine and faecal microbial diversity and metabolomics are measured using mass spectroscopy/metry at baseline, within 2 weeks and at the point of 20% weight loss.

- 5. Total caloric intake and macronutrient composition is measured using dietary records at baseline and at 1 year
- 6. HbA1c is measured using by laboratory assays at baseline and 1 year
- 7. Total number of medications are measured using health records at baseline and 1 year
- 8. Rate of patients achieving diabetes remission is measured using HbA1c and number of medications at 1 year
- 9. Body weight is measured using scales at baseline and 1 year
- 10. Systolic, diastolic blood pressure and pulse are measured using a sphygmomanometer at baseline and 1 year
- 11. Serum fasting lipids are measured using laboratory assays at baseline and 1 year
- 12. Medical, surgical, nutritional and psychological complications are measured using health records at 1 year
- 13. Adverse events are measured using health records at 1 year

#### Completion date

14/08/2018

# **Eligibility**

#### Key inclusion criteria

- 1. Both genders
- 2. Age 18-70 years
- 3. Type 2 diabetes mellitus
- 4. Obesity
- 5. HbA1c>7.0%
- 6. On glucose-lowering medication

## Participant type(s)

**Patient** 

#### Healthy volunteers allowed

No

#### Age group

Adult

#### Lower age limit

18 years

#### Upper age limit

70 years

#### Sex

All

#### Total final enrolment

53

#### Key exclusion criteria

- 1. Contraindications to bariatric surgery
- 2. Type 1 diabetes
- 3. Pregnancy or breastfeeding
- 4. Recent blood donation

## Date of first enrolment

31/07/2015

#### Date of final enrolment

01/02/2017

## Locations

#### Countries of recruitment

United Kingdom

England

# Study participating centre

Imperial College London, Hammersmith Hospital (lead centre)

Du Cane Road London United Kingdom W12 0NN

# Study participating centre

King's College London

Denmark Hill London United Kingdom SE5 9RS

# Sponsor information

#### Organisation

Imperial College London

#### **ROR**

https://ror.org/041kmwe10

# Funder(s)

#### Funder type

Government

#### Funder Name

National Institute for Health Research

#### Alternative Name(s)

National Institute for Health Research, NIHR Research, NIHRresearch, NIHR - National Institute for Health Research, NIHR (The National Institute for Health and Care Research), NIHR

#### **Funding Body Type**

Government organisation

#### **Funding Body Subtype**

National government

#### Location

**United Kingdom** 

# **Results and Publications**

Individual participant data (IPD) sharing plan

### IPD sharing plan summary

Available on request

## **Study outputs**

| Output type                   | Details                       | Date created | Date added | Peer reviewed? | Patient-facing? |
|-------------------------------|-------------------------------|--------------|------------|----------------|-----------------|
| Results article               |                               | 06/11/2020   | 23/09/2021 | Yes            | No              |
| Results article               |                               | 01/02/2021   | 18/08/2023 | Yes            | No              |
| HRA research summary          |                               |              | 28/06/2023 |                | No              |
| Participant information sheet | Participant information sheet | 11/11/2025   | 11/11/2025 | No             | Yes             |