Intelligent Fetal Imaging and Diagnosis (iFIND)

Submission date 19/03/2015	Recruitment status Suspended	 Prospectively registered Protocol
Registration date 30/03/2015	Overall study status Completed	 Statistical analysis plan Results
Last Edited 10/04/2024	Condition category Neonatal Diseases	 Individual participant data Record updated in last year

Plain English summary of protocol

Background and study aims

There is a need to improve the accuracy of the 18-20 week fetal ultrasound scan. This is because current technologies and screening methods do not pick up all of the abnormalities that could be detected. It is important to be able to spot any potential problems with the fetus (baby) before he/she is born. Making a diagnosis prenatally (before a baby is born) allows the expectant parents to make informed choices about whether or not to continue with the pregnancy. It can also improve a baby's prospects by allowing a treatment plan to be produced from the moment the baby is born. We would like to improve ultrasound scanning so that in the future all babies have the best outcome possible.

Who can participate?

Adult women (at least 18) who are between 18-24 weeks pregnant.

What does the study involve?

Ultrasound data from the routine 20 week scan from willing participants are saved to use for research to help us improve ultrasound scanning in the future. The scan itself is performed exactly as usual but instead of only a selection of snapshots of the baby being recorded, as is usually the case, the data from the whole ultrasound recording from the scan is saved and retained for this research study. Participants choosing to take part in the second part of the study have additional ultrasound images of their baby performed. The data is used the data to teach our new imaging system the best way to capture high quality images. We would also like to collect as many images as we can to build a database of the baby's body which computer programmes can use to compare with new ultrasound images. In this way we hope to be able to automatically detect different fetal organs and diagnose whether or not they are developing normally. Most women taking part in the study will have their research ultrasound and MRI scan on the same day. If they prefer, it may be possible for them to have the research ultrasound scan and the MRI scan a few days apart from each other.

What are the possible benefits and risks of participating?

If the participant is just having the data from their routine 20 week scan recorded there are no direct benefits to them. However, in the future we hope that the information gained from the study will lead to better antenatal diagnosis of fetal abnormalities and be used in all antenatal clinics nationally. Participants taking part in the additional research scans will be given a copy of the MRI scan of their baby, including a short video (cine) of their baby, and may also be given a

3D ultrasound picture. The fetal ultrasound has no perceived risks. We have thoroughly investigated all known potential risks to the baby and to the best of our knowledge and that of the medical community there are no additional risks to the baby or long-term effects of having the MRI scan. In addition, the MRI scan is not believed to have hazards associated with it when operated within National Radiological Protection Board Guidelines (which we do).

Where is the study run from?

The research is organised by and Kings College London and Guys and St Thomas' NHS Foundation Trust. The study is run from St Thomas' Hospital in London

When is the study starting and how long is it expected to run for? March 2014 to April 2023

Who is funding the study? The study is funded by the charity the Wellcome Trust and the Engineering and Physical Sciences Research Council.

Who is the main contact? Dr Shalini Jadeja ifind@kcl.ac.uk

Study website www.ifindproject.com

Contact information

Type(s) Public

Contact name Dr Silvia Giampieri

Contact details School of Biomedical Engineering & Imaging Sciences (BMEIS) King's College London 9th Floor, Becket House 1 Lambeth Palace Road London United Kingdom SE1 7EU

silvia.1.giampieri@kcl.ac.uk

Type(s) Scientific

Contact name Prof Joseph Hajnal

Contact details

Centre for the Developing Brain & Department Biomedical Engineering Division of Imaging Sciences King's College London 1st Floor South Wing St Thomas' Hospital London United Kingdom SE1 7EH +44 207 188 9145 jo.hajnal@kcl.ac.uk

Additional identifiers

EudraCT/CTIS number

IRAS number

ClinicalTrials.gov number

Secondary identifying numbers N/A

Study information

Scientific Title

A computer-guided Imaging System for prenatal screening and comprehensive diagnosis of fetal abnormalities

Study objectives

Prenatal diagnosis of congenital abnormalities has become increasingly important. Making a diagnosis during fetal life permits expectant parents to make informed choices about the continuation of pregnancy. Prenatal diagnosis of some abnormalities can also improve fetal prognosis by allowing a treatment plan to be produced. This will enable access to specialist units and appropriate treatments from birth, rather than having a baby born that is severely ill and does not have a clear diagnosis or treatment plan.

Currently, screening for fetal abnormalities by ultrasound takes place at 12 weeks and 18-20 weeks. The 12-week scan is focused on looking for markers of chromosomal abnormality rather than structural abnormalities, because the fetus is small and anatomical structures are not fully developed. Although anatomical structures are developed at the 18-20 week scan, it can sometimes be difficult to obtain clear images, for instance if the fetus is in an unfavourable position.

Ultrasound is a powerful tool in fetal imaging. It is inexpensive, safe and portable, and images are acquired in real-time. Ultrasound passes sound waves into the body to create pictures from their reflections. It is commonly used to see if babies in the womb are healthy. Although every pregnant mother in the country has a scan at around 20 weeks, many of the babies who have problems are not picked up on these ultrasound scans. This is because scanning requires significant expertise which is difficult to have present in every hospital. We are proposing new technologies that allow scanning to be carried out not just with one probe (the device which

takes the ultrasound picture) but up to four probes that can be used at the same time, and which move automatically to the right place to get the best pictures. This will mean we get a detailed picture of the whole baby which can then be analysed in an automatic way using advanced computer technologies to ensure we do not miss babies with potential problems. This should mean a high quality scanning service across the country and fewer babies who have major problems will be missed.

Ethics approval required

Old ethics approval format

Ethics approval(s)

NRES Committee London – Riverside, 10/12/2014, refs: 14/LO/1805 and 14/LO/1806.

Study design

Observational, cross-sectional, single-centre study.

Primary study design Observational

Secondary study design Cross sectional study

Study setting(s) Hospital

Study type(s) Diagnostic

Participant information sheet

Health condition(s) or problem(s) studied

Our aim is to improve prenatal diagnosis rates for fetal abnormalities

Interventions

We will gather ultrasound and some MRI data from pregnant ladies at the time of their anomaly scan (18-24 week's gestation) and use this to develop computer aided diagnostics, build fetal atlases and develop a multi-transducer ultrasound system to automate fetal anomaly detection and improve the rates of their diagnosis.

Intervention Type

Procedure/Surgery

Primary outcome measure

The data from up to 20,000 routine anomaly scans performed at 18-21 week's gestation will be collected.

Secondary outcome measures

Ultrasound and MRI imaging data will be used in combination with information on image labelling and image acquisition (transducer position and pressure sensing) obtained at 20-25 week's gestation.

Overall study start date

01/03/2014

Completion date

01/04/2023

Eligibility

Key inclusion criteria

1. Pregnancy at 18+0 to 24+6 weeks at time of scan

2.18 years of age and over

3. Competent to read information sheet and understand the purpose of the study and what it would entail.

4. Competent to read information sheet and understand the purpose of the study and what it would entail. Where English is poor an interpreter will be used.

Participant type(s)

Patient

Age group Adult

Lower age limit 18 Years

Sex Female

Target number of participants 20,500

Key exclusion criteria

1. Inability to understand study information given in written form and explained verbally

- 2. Contraindication to MRI e.g. metallic implant or foreign body or pacemaker
- 3. Severe obesity as the mother may not fit in the magnet

4. Severe claustrophobia (unusual, but patient asked if can go in an elevator as a screen for severity of problem)

Date of first enrolment

27/02/2015

Date of final enrolment

01/04/2023

Locations

Countries of recruitment England

United Kingdom

Study participating centre St Thomas' Hospital Westminster Bridge Road London United Kingdom SE1 7EH

Sponsor information

Organisation Guys and St Thomas' NHS Trust

Sponsor details

16th Floor, Tower Wing Guy's Hospital Great Maze Pond London England United Kingdom SE1 9RT +44 (0)20 7188 7188 Balathas.Thirugnanabalan@gstt.nhs.uk

Sponsor type

Hospital/treatment centre

ROR

https://ror.org/00j161312

Funder(s)

Funder type Research council

Funder Name Wellcome Trust

Alternative Name(s)

Funding Body Type Private sector organisation

Funding Body Subtype

International organizations

Location United Kingdom

Funder Name Engineering and Physical Sciences Research Council

Alternative Name(s) UKRI Engineering and Physical Sciences Research Council, Engineering and Physical Sciences Research Council - UKRI, Engineering & Physical Sciences Research Council, EPSRC

Funding Body Type Government organisation

Funding Body Subtype National government

Location United Kingdom

Results and Publications

Publication and dissemination plan

Intention to publish date 01/10/2023

Individual participant data (IPD) sharing plan

IPD sharing plan summary

Not expected to be made available

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient- facing?
<u>HRA research</u> <u>summary</u>			28/06 /2023	No	No
<u>HRA research</u> <u>summary</u>			28/06 /2023	No	No
Other publications	Observer agreement and variability study	29/01/2018	10/04 /2024	Yes	No