Efficacy of DE-MRI-guided fibrosis ablation vs. conventional catheter ablation of atrial fibrillation

Submission date	Recruitment status	[X] Prosp
01/12/2015	No longer recruiting	[X] Proto
Registration date	Overall study status	[_] Statis
08/12/2015	Completed	[_] Resul
Last Edited	Condition category	[] Individ
13/01/2022	Circulatory System	[_] Recor

- pectively registered
- ocol
- stical analysis plan
- lts
- idual participant data
- rd updated in last year

Plain English summary of protocol

Background and study aims

Atrial fibrillation (AF) is the term used to refer to a heart condition which causes an irregular and often abnormally fast heart rate (arrhythmia); in some cases the heart can beat faster than 100 beats per minute. Symptoms include feeling dizzy, being short of breath and feeling tired. Patients may also be aware of heart palpitations, where the heart feels like its pounding, fluttering or beating irregularly. The exact cause of the condition is unknown but is more common with age and effects some groups of people more than others. It is the most common cause of heart (cardiac) arrhythmia, affecting millions of people in the United States and around the world. Treating AF continues to be a challenge. Over the last 15 years, the catheter-based AF ablation procedure, which involves destroying the area of the heart causing the condition, has been widely adopted. Approximately 50% of patients treated with catheter ablation have been suffering from a persistent type of the arrhythmia. Unfortunately, ablation results in this population have been dismal, not only because of low success rates in suppressing arrhythmias, but also from a healthcare cost point of view. In fact, the long-term success of such a procedure has been reported to be as low as 20%, and patients may need more than two ablation procedures to just stop arrhythmia temporarily. A major issue contributing to the low success of catheter ablation is the lack of a protocol to appropriately select patients that would respond to this treatment. Currently, cardiologists base their decision to ablate persistent AF on various coexisting diseases (comorbidities), a concept that has not been proven successful. With the introduction of AF ablation as a first line therapy option, a better and more accurate selection protocol is urgently needed. There is a strong association between AF and atrial tissue fibrosis (thickening and scaring of tissue in the heart). Recently, a novel DE-MRI (Delayed-Enhancement MRI) based imaging technique has been shown to reveal the degree of fibrotic atrial tissue in patients suffering from AF. A number of studies have shown that the amount of atrial tissue fibrosis present is directly related to how successful the treatment is likely to be. In addition, in one study involving a number of different study sites, the best predictor for how successful the treatment is related to whether there are areas of atrial fibrosis covered by ablation lesions (scaring caused by the ablation treatment). The aim of this study is to examine how successful targeting atrial fibrosis tissue during an ablation procedure is at treating persistent AF.

Who can participate? Adults (aged at least 18) with persistent SF.

What does the study involve?

Patients are randomized to receive either conventional pulmonary vein isolation (PVI) ablation or PVI plus fibrosis-guided ablation. All patients are then followed up for the next 18 months to assess whether there is a recurrence of the persistent abnormal heart rhythms.

What are the possible benefits and risks of participating?

Subjects in either treatment arm receiving fibrosis-guided ablation targeting atrial fibrosis may stay in a normal heart rhythm and may have fewer AA recurrences than those who receive conventional pulmonary vein isolation (PVI) ablation. The study also makes use of new technologies that allow closer and more frequent monitoring of patients' heart rhythm. All participants will receive the mobile heart monitoring device (ECG Check) to complete regular monitoring of their heart rhythm after the ablation procedure. This may allow for earlier detection of atrial arrhythmia recurrence and may also reveal other arrhythmias of clinical significance. The second MRI scan will provide information about early post-ablation scar formation and the presence and degree of pulmonary vein stenosis (narrowing of the veins that carry oxygen-rich blood from the lungs to the heart). This information may be clinically beneficial to all participants in the study. The general risks of catheter-based ablation for AF include perforation of the heart, pulmonary vein stenosis, stroke, and bleeding or pain at the insertion site. There are also potential risks related to the fibrosis-guided ablation procedures: Due to the longer time under anesthesia, more areas being ablated and longer total procedure time, subjects in the fibrosis-quided ablation group are at greater potential risk for scarring, nerve damage, esophageal (food pipe) injury, perforation of the heart, and atrial esophageal fistulas (a rare complication in which the esophagus is damaged by the catheter used in the ablation procedure. The small amount of blood drawn for the study will pose a very small risk e.g. bleeding, pain, or hematoma/bruise at the puncture site.

Where is the study run from?

This is a multicentre, international study with trial participating sites in Spain, China, Canada, Australia, Italy, France, Netherlands and Germany.

When is the study starting and how long is it expected to run for? April 2016 to April 2019

Who is funding the study? 1. St June Medical (USA) 2. Siemens USA 3. Medtronic (USA)

Who is the main contact? 1. Dr Christina Pacchia (public) 2. Dr Nassir Marrouche (scientific)

Contact information

Type(s) Public

Contact name

Dr Christina Pacchia

Contact details

Comprehensive Arrhythmia Research and Management (CARMA) Center Division of Cardiology 30 North 1900 East, Room 4A100 Salt Lake City United States of America 84132

Type(s)

Scientific

Contact name Dr Nassir Marrouche

ORCID ID http://orcid.org/0000-0003-0970-9182

Contact details

Comprehensive Arrhythmia Research and Management (CARMA) Center Division of Cardiology 30 North 1900 East, Room 4A100 Salt Lake City United States of America 84132

Additional identifiers

EudraCT/CTIS number

IRAS number

ClinicalTrials.gov number NCT02529319

Secondary identifying numbers NCT02529319

Study information

Scientific Title

Efficacy of DE-MRI-guided fibrosis ablation vs. conventional Catheter Ablation of Atrial Fibrillation: DECAAF II

Acronym

DECAAF II

Study objectives

We hypothesize that patients receiving fibrosis-guided ablation in addition to conventional PVI ablation will have fewer atrial arrhythmias (AA) recurrences than those who receive PVI ablation alone.

Ethics approval required

Old ethics approval format

Ethics approval(s) University of Utah Institutional Review Board, 18/12/2015, ref: 82681

Study design Prospective randomized multicenter trial

Primary study design Interventional

Secondary study design Randomised controlled trial

Study setting(s) Hospital

Study type(s) Treatment

Participant information sheet

Not available in web format, please use contact details to request a participant information sheet

Health condition(s) or problem(s) studied

Atrial fibrillation (AF)

Interventions

Consented patients will be randomized to one of two study groups to receive conventional PVI ablation (Group 1) or PVI + fibrosis-guided ablation (Group 2).

In Group 1 (control group), PVI ablation will be performed as recommended by the HRS consensus statement and physicians will be blinded to the pre-ablation MRI fibrosis results. The operator will create lesions around the PV antra. Entrance block in all pulmonary veins will be confirmed using standard techniques. Successful ablation is operationally defined as an abolishment of PV electrograms (EGMs). Assessment for the presence of exit block by pacing within the antral lesion set will be at the discretion of the operator. If normal sinus rhythm cannot be restored at the end of the PVI portion of the procedure despite cardioversion in patients randomized to the conventional ablation group (Group 1), the operator may pursue further measures, such as triggering ablation, to eliminate recurrent arrhythmia if needed. The creation of a right atrial cavotricuspid isthmus line is also left at the discretion of the operator.

In Group 2 (intervention arm), processed DE-MRI images will be merged with the 3D mapping system at the Clinical Center. All patients will undergo the previously described pulmonary vein isolation procedure (PVI). Pulmonary vein entrance block at the end of the ablation procedure

should be confirmed and is defined as loss of pulmonary vein potentials using standard techniques. After PVI and PV entrance block have been confirmed, fibrosis-quided ablation will ensue. The operator will encircle by ablating at the perimeter of the fibrosis and ensure loss of capture in the fibrotic isolated area at 10 milli-amp stimulation, and/or completely cover all fibrotic areas with ablation lesions. The tagged ablation lesions should confirm encircling and/or covering of the entire contiguous fibrotic areas indicated by the mapping system. Ablation to the fibrotic areas should be performed as per the operator's standard point lesion energy delivery strategy. It is suggested that a minimum of 8-10 s (and if available 10 g of force) lesions should be delivered. It is recommended that energy delivery (power and temperature) should be adjusted as needed when ablating within the posterior wall region over the region of the esophagus. The operator may connect 2 neighboring fibrotic areas or anchor fibrotic area to anatomic structure such as the isolated PV or valve annuli to avoid creating slow conduction zones or unanchored islands of fibrosis that might be deemed to be potentially arrhythmogenic. If the normal sinus rhythm cannot be restored after PVI and ablation of fibrotic areas followed by cardioversion in patients randomized to the fibrosis-guided ablation group (Group 2), the operator may to pursue further measures to eliminate recurrent arrhythmia, as described above for the conventional ablation group (Group 1).

Total duration of treatment in both arms will range from 1-2 hours. Follow-up for both arms will be 18 months post treatment. All investigators will attend an in-person training symposium for the intervention arm (Group 2)

Intervention Type

Procedure/Surgery

Primary outcome measure

The recurrence of atrial arrhythmia post-ablation, defined as a non-self-terminating bout of atrial fibrillation, atrial flutter, or atrial tachycardia demonstrated by at least two consecutive, valid ECG tracings occurring within 6 hours up to a maximum of 7 days of each other after the 90-day post-ablation blanking period.

The study outcome is formally defined by at least two consecutive, valid ECG tracings indicating an atrial arrhythmia (AA) (atrial fibrillation, atrial flutter or atrial tachycardia).

Secondary outcome measures

1. Measuring individual components of primary outcome (AF, AFl, AT), measured using ECG readings using either iPhone (daily recordings) or 12-lead ECG (baseline, 3 month, 12 and 18 month visit)

2. Symptomatic AA, measured using ECG readings using either iPhone (daily recordings) or 12lead ECG (baseline, 3 month, 12 and 18 month post ablation) in conjunction with a 5-question survey about how the patient is feeling (symptoms of AA) answered weekly throughout the study

3. AF cycle length/regularity/termination, measured using 12-lead ECG at 3 month, 12 or 18 month post ablation)

4. CV-related hospitalization, measured using chart review and verbal medical history for each patient at baseline, 3 month, 12 and 18 months post ablation

5. CV related mortality, measured using chart review and verbal medical history for each patient at baseline, 3 month, 12 and 18 months post ablation

6. Quality of life, measured using the Toronto Atrial Fibrillation Severity Scale (AFSS) at 3, 12,

and 18 months post ablation

7. AF burden, measured using the Toronto Atrial Fibrillation Severity Scale (AFSS) at 3, 12, and 18 months post ablation

Overall study start date

01/04/2016

Completion date

01/04/2019

Eligibility

Key inclusion criteria

Patients with persistent AF defined as 7 days or more of AF as evidenced by either:
 1.1 rhythm strip or
 2. written documentation
 2. Undergoing first AF ablation as per recent HRS consensus document (has not had a previous left atrial ablation or cardiac surgical procedure)
 3. Age ≥ 18 years

Participant type(s)

Patient

Age group Adult

Lower age limit 18 Years

Sex

Both

Target number of participants 900

Key exclusion criteria

- 1. Contraindication for DE-MRI with a full dose of contrast agent
- 2. Contraindication to beta blockers, if necessary, for DE-MRI
- 3. Women currently pregnant
- 4. Mental or physical inability to take part in the study
- 5. Inability to be placed in MRI due to body mass or body habitus
- 6. Known terminally ill patients

7. Subjects without daily access to a smart phone or tablet compatible with the ECG Check application and ability to upload ECG tracings for the entire follow up period.

Date of first enrolment

01/04/2016

Date of final enrolment

01/04/2017

Locations

Countries of recruitment

Australia

Belgium

Canada

China

France

Germany

Italy

Netherlands

Spain

United States of America

Study participating centre Johns Hopkins University Baltimore Maryland United States of America

Study participating centre Harvard University Cambridge Massachusetts United States of America 02138

Study participating centre University of Pennsylvania Philadelphia Pennsylvania United States of America 19104 **Study participating centre Loyola University Chicago** 1032 W Sheridan Rd Illinois United States of America 60660

Study participating centre University of South Florida

4202 E. Fowler Avenue Tampa Florida United States of America 33620

Study participating centre Leipzig University

Augustusplatz 10 Leipzig Germany 04109

Study participating centre Klinikum Coburg Ketschendorfer Str. 33 Coburg Germany 96450

Study participating centre Kerckhoff-Klinik Benekestraße 2-8 Bad Nauheim Germany 61231

Study participating centre Bordeaux Segalen University 146 Rue Léo Saignat Bordeaux France 33000

Study participating centre University of Washington Seattle Washington United States of America

Study participating centre Mayo Clinic 13400 E. Shea Blvd. Scottsdale Arizona United States of America 85259

Study participating centre Gregorio Marañón Hospital Calle del Dr. Esquerdo, 46 Madrid Spain 28007

Study participating centre Hospital Clínic de Barcelona Villarroel, 170 Barcelona Spain 08036

Study participating centre Haga Teaching Hospital Hague Netherlands

Study participating centre

Mount Sinai Heart

One Gustave L. Levy Place New York New York United States of America 10029-6574

Study participating centre Ghent University St. Pietersnieuwstraat 33

Gent Belgium 9000

Study participating centre Swedish Medical Center

5300 Tallman Ave NW Seattle Washington United States of America 98107

Study participating centre University of Rostock 8051 Rostock Germany

Study participating centre Brigham and Women's Hospital 75 Francis St Boston Massachusetts United States of America 02115

Study participating centre University Heart Center Freiburg (Universitäts-Herzzentrum Freiburg), Bad Krozingen Südring 15 Bad Krozingen Germany 79189

Study participating centre Cardiology Center Monzino (Centro Cardiologico Monzino) Via S. Barnaba, 30 Milano Italy 20122

Study participating centre University of Adelaide & Royal Adelaide Hospital North Terrace, Adelaide South Australia Australia 5000

Study participating centre Hollywood Hospital Monash Ave Nedlands Western Australia Australia 6009

Study participating centre Dresden University of Technology (Technischen Universität Dresden) 01069 Dresden Germany

Study participating centre Isala Clinics (Isala Klinieken) Netherlands

Study participating centre

University of California, Los Angeles (UCLA)

Los Angeles California United States of America 90095

Study participating centre West China Hospital

37 Guoxue Alley Wuhou Chengdu Sichuan China

Study participating centre Beijing Anshen Hospital Beijing China

Study participating centre University of Sydney New South Wales Australia 2006

Study participating centre Provena St. Joseph Medical Center 333 Madison St Joliet Illinois United States of America 60435

Study participating centre Cleveland Clinic 2049 E 100th St Cleveland Ohio United States of America 44195

Study participating centre Valley Health System of NY and NJ 223 N Van Dien Ave Ridgewood New Jersey United States of America 07450

Sponsor information

Organisation St Jude Medical

Sponsor details One St. Jude Medical Drive St. Paul United States of America 55117

Sponsor type Industry

Organisation Siemens Medical Solutions USA, Inc.

Sponsor details 2501 N. Barrington Rd. Hoffman Estates United States of America 60192

Sponsor type Industry

Organisation Medtronic Clinical Operations **Sponsor details** 8200 Coral Sea Street NE, MVN 34 Mounds View United States of America 55112

Sponsor type Industry

Organisation St. Jude Medical

Sponsor details 3333 S. Diamond Canyon Road Diamond Bar United States of America 91765

Sponsor type Industry

Funder(s)

Funder type Industry

Funder Name St. Jude Medical

Alternative Name(s) St. Jude Medical, Inc., SJM

Funding Body Type Private sector organisation

Funding Body Subtype For-profit companies (industry)

Location United States of America

Funder Name Siemens USA Alternative Name(s) Siemens Corporation, Siemens

Funding Body Type Government organisation

Funding Body Subtype For-profit companies (industry)

Location United States of America

Funder Name Medtronic

Alternative Name(s) Medtronic Inc.

Funding Body Type Private sector organisation

Funding Body Subtype For-profit companies (industry)

Location United States of America

Results and Publications

Publication and dissemination plan

Manuscript writing will begin during the third and final year of the study. Results are estimated to be published one year after the study has been closed and the database has been locked, approximately April 2020. Results will be disseminated throughout the trial at national and international conferences such as the American Heart Association, American Cardiology Conference, and Heart Rhythm Society.

Intention to publish date

30/04/2020

Individual participant data (IPD) sharing plan Not provided at time of registration

IPD sharing plan summary Stored in repository

Study outputs

Output type
Protocol article

Date created 01/04/2021 Date added 13/01/2022 **Peer reviewed?** Yes **Patient-facing?** No