Effects of phrenic nerve electrical stimulation on diaphragm function and weaning outcomes

Submission date	Recruitment status	Prospectively registered
20/06/2021	No longer recruiting	☐ Protocol
Registration date	Overall study status	Statistical analysis plan
02/07/2021	Completed	Results
Last Edited	Condition category	Individual participant data
25/06/2021	Respiratory	[] Record updated in last year

Plain English summary of protocol

Background and study aims

The diaphragm is the main respiratory (breathing) muscle and plays an important role in ventilation, airway clearance and speech. Mechanical ventilation is a form of life support where a machine takes over the work of breathing when a person is not able to breathe enough on their own. As ICU patients on mechanical ventilation can rapidly develop diaphragmatic weakness, strategies to improve diaphragmatic function are urgently needed. Currently, no drugs have been proven to improve diaphragm function. External diaphragm pacing (EDP) may be a non-invasive treatment, especially for critically patients who are susceptible to diaphragmatic weakness. EDP is inexpensive and easy to operate, and has been used in patients with other diseases. The aim of this study is to find out whether early intervention with EDP in mechanically ventilated patients with mechanical ventilation improves diaphragm function.

Who can participate?

Patients over 18 years old with acute respiratory failure requiring invasive mechanical ventilation

What does the study involve?

Participants will be randomly allocated to receive sham treatment or EDP treatment. Treatment will begin at the time of enrolment of patients until they are weaned from mechanical ventilation. The maximum follow-up is 28 days.

What are the possible benefits and risks of participating?

The patient's condition may improve and this study may help develop a new treatment for other mechanically ventilated patients. Sputum discharge may increase during treatment. If it is not discharged in time, it may increase the risk of aspiration. The researchers will pay close attention to and timely aspirate sputum for patients during treatment. In addition, when the EDP intensity is too high the patient may experience discomfort, and the researchers will continuously help to adjust the intensity to help the patient feel comfortable.

Where is the study run from?

Sir Run Run Shaw Hospital affiliated to the Medical College of Zhejiang University (China)

When is the study starting and how long is it expected to run for? January 2020 to December 2021

Who is funding the study? Investigator initiated and funded

Who is the main contact? Ding Yuejia ding_yuejia@zju.edu.cn

Contact information

Type(s)

Public

Contact name

Miss Yuejia Ding

Contact details

3 Qingchun East Road Jianggan District HangZhou China 310016 +86 (0)18268113280 ding yuejia@zju.edu.cn

Additional identifiers

Clinical Trials Information System (CTIS)

Nil known

ClinicalTrials.gov (NCT)

Nil known

Protocol serial number

20200200106-11

Study information

Scientific Title

External phrenic nerve pacing to preserve diaphragm function and improve weaning outcomes: a feasibility study

Study objectives

Early intervention with EDP in severe mechanical ventilated patients can improve their diaphragm function and weaning outcomes, and EDP is feasible for patients with severe mechanical ventilation.

Ethics approval required

Old ethics approval format

Ethics approval(s)

Approved 01/06/2020, Medical Ethics Committee of Run Run Shaw Hospital Affiliated to Zhejiang University School of Medicine (3 Qingchun East Road, Jianggan District, Hangzhou; +86 (0)57186006811; xumingsrrsh@foxmail.com), ref: 20200106-11

Study design

Randomized controlled trial

Primary study design

Interventional

Study type(s)

Treatment

Health condition(s) or problem(s) studied

Patients with acute respiratory failure requiring invasive mechanical ventilation

Interventions

After the candidates or their family members sign the informed consent, the research staff contacts the liaison of the lead center for central randomization by specially assigned staff.

Sham treatment group:

ICU standard care is prescribed by the attending physician according to the relevant program /guideline. For EDP treatment, the stimulation intensity will be set to 1 unit (no obvious contraction of the diaphragm).

Treatment group:

EDP treatment will be performed on the basis of ICU standard care (30 minutes, twice a day, 7 days a week).

The small electrode pieces are placed in the outer edge of the sternocleidomastoid muscle, at the lower 1/3 junction (flat cartilage level), and the large electrode piece is placed at the inner edge of the midclavicular line and the second intercostal space. Set parameters (pulse frequency: 40 Hz, pacing times: 9 times/minute, if the EDP and the patient's breathing are not synchronized, adjust the pacing times). The intensity of the stimulus gradually increases from 0 to the maximum intensity that the patient can tolerate. Awakened patients can respond to intensity while sedated patients need to assess whether the intensity is appropriate based on facial expressions, physical movements, blood pressure, and heart rate. Painful facial expressions include frowning, brow reduction, tight eyelids, contraction of the diaphragm and closure of the eyelids; painful movements of the body may be slow, cautious movement, touching the pain, and seeking attention through movement.

For patients with internal jugular vein catheterization, if the electrode piece is too close to the puncture point, the electrode piece is cut to ensure a distance of 1 cm away from the puncture point. Another option is unilateral stimulation.

Treatment will begin at the time of enrolment of patients until they are weaned. The maximum follow-up is 28 days.

Intervention Type

Device

Phase

Not Applicable

Primary outcome(s)

- 1. Enrollment rate: number of enrolled patients divided by total number of patients meeting the criteria of this study at 48 hours after the establishment of an artificial airway
- 2.Retention rate (incorporating acceptability of the therapy): number of patients who completed the study divided by number of patients admitted at the end of the entire experiment
- 3. Response rate: diaphragmatic mobility measured by ultrasound at the first EDP treatment
- 4. Incidence rate of adverse events measured using number of patients with adverse events divided by patients enrolled in the group during the entire test

Key secondary outcome(s))

- 1. Diaphragm thickness: at the end of exhalation and inspiration the thickness of the right diaphragm will be measured using diaphragm ultrasound during tidal breathing to calculate the muscle thickening score. Measured at baseline, every other day, for the first SBT (under EDP) and on day 28
- 2. Diaphragm mobility: right diaphragmatic mobility, inspiratory time, inspiratory slope and acceleration measured using diaphragm ultrasound at the first SBT (under EDP treatment)
- 3. Duration of mechanical ventilation, reintubation, weaning success rate and survival rate measured using patient records within 28 days
- 4. Blood gas analysis using blood gas analysis instrument before and after EDP session every morning

Completion date

31/12/2022

Eligibility

Key inclusion criteria

- 1. Patients with acute respiratory failure requiring invasive mechanical ventilation
- *Incorporated within 48 hours after the establishment of the artificial airway
- 2. Estimated mechanical ventilation time >72 hours
- 3. Aged over 18 years old

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Adult

Lower age limit

18 years

Sex

Key exclusion criteria

- 1. Pneumothorax or mediastinal emphysema
- 2. Acute myocarditis, severe arrhythmia
- 3. Neuromuscular diseases that may affect weaning, including myasthenia gravis, motor neuron disease, and congenital myopathy
- 4. Hemodynamic instability (mean arterial pressure <60 mmHg and norepinephrine >0.2 ug/kg/min)
- 5. Paroxysmal sympathetic hyperactivity syndrome
- 6. Even chest
- 7. Pregnancy
- 8. Fitted with a pacemaker/implantable defibrillator
- 9. Applying neuromuscular blockers (NMBAs) within the past 6 hours
- 10. History of neck radiation therapy or neck surgery
- 11. Cancer of the neck and lung
- 12. Unable to obtain accurate diaphragm ultrasound results

Date of first enrolment

01/07/2020

Date of final enrolment

01/12/2022

Locations

Countries of recruitment

China

Study participating centre

Sir Run Run Shaw Hospital affiliated to medical college of ZheJiang University

3 QingChun East Road Jianggan District HangZhou China 310016

Sponsor information

Organisation

Sir Run Run Shaw Hospital

ROR

https://ror.org/00ka6rp58

Funder(s)

Funder type

Hospital/treatment centre

Funder Name

Sir Run Run Shaw Hospital

Alternative Name(s)

, SRRSH

Funding Body Type

Private sector organisation

Funding Body Subtype

Other non-profit organizations

Location

China

Results and Publications

Individual participant data (IPD) sharing plan

The datasets generated during and/or analysed during the current study are/will be available upon request from ding_yuejia@zju.edu.cn after article publication. The data will be available beginning 9 months and ending 36 months following article publication. Anyone with any purpose who wishes to access the data is OK. Consent from participants was obtained and the data is anonymous.

IPD sharing plan summary

Available on request

Study outputs

Output type Details Date created Date added Peer reviewed? Patient-facing?

Participant information sheet 11/11/2025 No Yes