Cerebral oxygenation during changes in vascular resistance and flow in patients on cardiopulmonary bypass

Submission date	Recruitment status No longer recruiting	Prospectively registered		
12/10/2015		☐ Protocol		
Registration date	Overall study status	Statistical analysis plan		
22/10/2015	Completed	[X] Results		
Last Edited 18/01/2019	Condition category	[] Individual participant data		
10/01/2019	Nervous System Diseases			

Plain English summary of protocol

Background and study aims

This study is performed in patients having cardiac (heart) surgery with the use of a heart-andlung machine. Blood supply to the brain is normally regulated by a mechanism called 'cerebral autoregulation'. Cerebral autoregulation means that the body preserves blood supply to the brain despite wide variations in blood pressure. A way of assessing blood supply to the brain is measuring the oxygen content of a small part of the brain tissue using near-infrared spectroscopy. This is a non-invasive method where two adhesive pads are placed on the patient's forehead. These pads send out light at a frequency close to the infrared part of the electromagnetic spectrum. This light can penetrate the skull and is reflected by the brain tissue. By analysing the reflected light, the oxygen saturation (i.e. the amount of oxygen present) of a small portion of the brain can be measured. Recent studies investigated the effects of different blood-pressure-increasing medications on the cerebral oxygenation (oxygen levels in the brain) and found that after a dose of the drug phenylephrine, blood pressure was raised, but cerebral oxygenation decreased. A possible mechanism for this could be that phenylephrine slightly increases the resistance of blood vessels to the brain and thus decreasing the blood flow; this potentially leads to a decrease in the oxygenation of brain tissue. In this study we want to investigate this hypothesis further by performing several blood-pressure-increasing manoeuvres in patients connected to a heart-and-lung machine during cardiac surgery. These include administration of two different substances widely used in standard care of anaesthesia to raise blood pressure (phenylephrine and vasopressin) and a increment (increase) in the heart-and-lung machine pump flow (to simulate a rise in cardiac output). These different manoeuvres will all raise blood pressure, but might have different effects on cerebral oxygenation. The results of this study will help to get a better understanding of physiological (normal) mechanisms that control blood supply to the brain.

Who can participate?

Adults aged 18-70 having cardiac surgery requiring a heart-and-lung machine.

What does the study involve?

During surgery, the blood pressure of all the participants are raised in three different ways in a

randomized order. The first method of raising blood pressure is a1-mediated, with phenylephrine, while CPB (cardiopulmonary bypass)-flow is clamped. The second method is non-a1-mediated, with vasopressin while CPB-flow remains unchanged. The third method involve increasing CPB-flow. Cerebral oxygenation and arterial blood pressure is measured for each participant before and after each method is applied.

What are the possible benefits and risks of participating? Not provided at time of registration.

Where is the study run from?
Academic Medical Center AMC (Netherlands)

When is the study starting and how long is it expected to run for? January 2010 to June 2013

Who is funding the study?
Academic Medical Center, AMC Amsterdam (Netherlands)

Who is the main contact? Mr Niek Sperna Weiland

Contact information

Type(s)

Scientific

Contact name

Mr Niek Sperna Weiland

ORCID ID

https://orcid.org/0000-0003-1305-1846

Contact details

Academic Medical Center Department of Anesthesiology, Meibergdreef 9 Amsterdam Zuidoost Netherlands 1105 AZ

Additional identifiers

Protocol serial number

Protocol revision 2.3; nov 23, 2009. NL29879.018.09. MEC 09/280.

Study information

Scientific Title

Cerebral oxygenation during changes in vascular resistance and flow in patients on cardiopulmonary bypass: a randomized cross over trial

Study objectives

Phenylphrine causes α1-receptor mediated cerebral vasoconstriction

Ethics approval required

Old ethics approval format

Ethics approval(s)

Medisch Ethische Toetsingscommissie Academisch Medisch Centrum, ref: 09/280

Study design

Single center interventional study

Primary study design

Interventional

Study type(s)

Other

Health condition(s) or problem(s) studied

Physiology of brain perfusion.

Interventions

During the cardiopulmonary bypass-phase of cardiac operations, when the patients were hemodynamically stable and a CPB-flow was 2.6 L•m-2•min-1 subjects underwent three interventions in randomized order. During these interventions no other hemodynamic interventions were performed.

- 1. Mean arterial blood pressure (MABP) was raised by increasing CPB-flow by 0.5 L•m-2•min-1 for five minutes
- 2. MABP was raised ≈15 mmHg by an α1-mediated increase in SVR with a PE bolus of 50-150 μg while CPB flow remained unaltered at 2.6 L•m-2•min-1
- 3. MABP was increased ≈15 mmHg by a V1-receptor mediated increase in SVR with a VP bolus of 0.1 0.4 IU while CPB flow remained unaltered at 2.6 L•m-2•min-1

Intervention Type

Mixed

Primary outcome(s)

Cerebral oxygenation before and after each intervention.

Key secondary outcome(s))

Arterial blood pressure before and after each intervention.

Completion date

14/06/2013

Eligibility

Key inclusion criteria

- 1. Age 18-70 years
- 2. Patients scheduled for elective cardiac surgery (CABG, aortic valve repair, mitral valve repair or combinations of the former), using mil hypothermic cardiopulmonary bypass.
- 3. Written informed consent present

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Adult

Lower age limit

18 years

Upper age limit

70 years

Sex

ΔII

Key exclusion criteria

- 1. Age ≤18 years
- 2. Emergency operations
- 3. Brain pathology in history (CVA)
- 4. Severe carotid artery stenosis (if no data is available, an echo-Doppler will be performed by the anesthesiologist after induction of anesthesia, prior to surgery)
- 5. Severe COPD
- 6. Absent informed consent
- 7. SaO2<90% at room temperature
- 8. Diabetes
- 9. Kidney failure

Date of first enrolment

23/03/2010

Date of final enrolment

14/06/2013

Locations

Countries of recruitment

Netherlands

Study participating centre

Academic Medical Center AMC

Meibergdreef 9 Amsterdam-Zuidoost Netherlands 1105 AZ

Sponsor information

Organisation

Academic Medical Center AMC

ROR

https://ror.org/03t4gr691

Funder(s)

Funder type

Hospital/treatment centre

Funder Name

Academic Medical Center, AMC Amsterdam (Netherlands)

Results and Publications

Individual participant data (IPD) sharing plan

IPD sharing plan summary

Stored in repository

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Results article	results	01/01/2017	18/01/2019	Yes	No
Participant information sheet	Participant information sheet	11/11/2025	11/11/2025	No	Yes