Muscle wasting in chronic obstructive pulmonary disease (COPD): the role of resistance training and protein supplementation

Submission date 21/10/2009	Recruitment status No longer recruiting	Prospectively registered		
		[_] Protocol		
Registration date 09/12/2009	Overall study status Completed	Statistical analysis plan		
		[X] Results		
Last Edited 25/02/2015	Condition category Respiratory	[] Individual participant data		

Plain English summary of protocol

Not provided at time of registration

Contact information

Type(s) Scientific

Contact name Dr Michael Steiner

Contact details

Consultant Respiratory Physician University Hospitals of Leicester NHS Trust Glenfield Hospital Groby Road Leicester United Kingdom LE3 9QP +44 (0)116 256 3450 michael.steiner@uhl-tr.nhs.uk

Additional identifiers

EudraCT/CTIS number

IRAS number

ClinicalTrials.gov number

Secondary identifying numbers

MRC ref: G0501985; UHL 10146

Study information

Scientific Title

Molecular approaches to reversing skeletal muscle wasting in chronic obstructive pulmonary disease (COPD): the role of resistance training and protein supplementation - a double-blind randomised placebo-controlled trial

Study objectives

This project will test the following principal hypotheses:

1. That muscle wasting in chronic obstructive pulmonary disease (COPD) is characterised by alterations in the expression of catabolic and anabolic genes (mRNA) and signalling pathways (protein and protein phosphorylation) that have been implicitly associated with the regulation of skeletal muscle protein degradation and synthesis when compared with non-wasted COPD patients, and similar aged healthy controls.

2. That a carefully controlled resistance training programme known to restore muscle mass in immobilised young healthy humans will have similar restorative effects in COPD patients and that these benefits will be mediated through changes in these candidate gene and signalling pathways. We will also determine how these effects differ between wasted and non wasted COPD patients and between patients and healthy controls.

3. That changes in the expression and activation of these regulatory pathways occurs early (within 24 hours) from the onset of rehabilitation as was seen following limb immobilisation in young healthy subjects.

4. That the positive effects of resistance training on skeletal muscle mass in COPD patients can be augmented when training is combined with dietary protein supplementation.

More details can be found at the following links:

UK Clinical Research Network Study Portfolio: http://public.ukcrn.org.uk/Search/StudyDetail. aspx?StudyID=4049

MRC research portfolio: http://www.mrc.ac.uk/ResearchPortfolio/Grant/Record.htm? GrantRef=G0501985&CaseId=6937

Ethics approval required

Old ethics approval format

Ethics approval(s)

1. Leicestershire, Northamptonshire & Rutland Research Ethics Committee 1, 26/09/2006, ref: 06 /Q2501/138

2. University Hospitals of Leicester (UHL) NHS Trust R&D, 05/01/2007, ref: 10146

3. Leicester City Primary Care Trust (PCT), 12/02/2008, ref: LNR PCRA 0696

Study design

Double-blind randomised placebo-controlled single-centre trial

Primary study design Interventional

Secondary study design

Randomised controlled trial

Study setting(s) Hospital

Study type(s) Treatment

Participant information sheet

Not available in web format, please use the contact details below to request a patient information sheet

Health condition(s) or problem(s) studied

Chronic obstructive pulmonary disease (COPD)

Interventions

1. Resistance training: The training programme will last 8 weeks and comprise three supervised half-hour lower limb resistance training sessions per week. Training will take place on an isokinetic dynamometer (Cybex II Norm: CSMi, USA). Subjects will perform 5 sets of 30 maximal knee extensions performed at 180 degrees/sec. Sets will be separated by 1 minute rest. Both legs will be trained.

2. Protein supplementation: COPD patients will be randomly allocated to receive a dietary protein (with carbohydrate) supplement or placebo throughout training. Healthy volunteers will receive a placebo. The supplement will contain 19 g protein and 49 g carbohydrate (Vitargo® Gainers Gold: Swecarb, Sweden) made up to 500 ml of water. The placebo will be an identical volume non-nutritive and non-caloric drink. Supplementation will take place immediately following each training session, as the timing of protein intake appears to be critical.

Intervention Type

Mixed

Primary outcome measure

Muscle gene and protein expression (vastus lateralis needle biopsy samples) at baseline, 24 hours, 4 weeks and 8 weeks.

Secondary outcome measures

1. Muscle strength (isometric and isokinetic quadriceps strength) at baseline, 4 weeks, 8 weeks and 6 months

2. Total body and quadriceps fat-free (muscle) mass (dual energy X-ray absorptiometry [DEXA]) at baseline, 4 weeks and 8 weeks

3. Circulating inflammatory cytokines (blood tests) at baseline, 24 hours, 4 weeks and 8 weeks

4. Whole-body exercise performance (incremental cycle ergometry test) at baseline and 8 weeks

5. Physical activity (questionnaire and activity monitor) at baseline and 8 weeks

6. Lung function and capillary blood gas tensions at baseline

Overall study start date

14/02/2007

Completion date 31/10/2010

Eligibility

Key inclusion criteria

For both COPD subjects and healthy control subjects: 1. Both males and females, aged between 50-85 years

COPD subjects:

1. Moderate-severe airflow obstruction (Forced expiratory volume in one second [FEV1] <50% predicted, FEV1/forced vital capacity [FVC] ratio <70%)

2. Reduced exercise tolerance (MRC grades III-V)

3. Stable

4. Able to carry out lower-limb resistance training

Healthy age-matched control subjects:

1. No evidence of airflow obstruction (FEV1 >80% predicted)

2. Able to carry out lower-limb resistance training

Participant type(s)

Mixed

Age group

Adult

Sex

Both

Target number of participants 120

Key exclusion criteria

COPD subjects:

- 1. Long-term oral corticosteriods
- 2. Anticoagulant therapy or disorders
- 3. long term oxygen therapy (LTOT)
- 4. Diabetes
- 5. Co-morbid conditions preventing exercise training
- 6. Subects who have completed pulmonary rehabilitation in the previous 12-months

Healthy age-matched controls:

Same as for COPD subjects, also those who meet the criteria for fat-free mass depletion are excluded.

Date of first enrolment 14/02/2007

Date of final enrolment 31/10/2010

Locations

Countries of recruitment England

United Kingdom

Study participating centre Glenfield Hospital Leicester United Kingdom LE3 9QP

Sponsor information

Organisation University Hospitals of Leicester NHS Trust (UK)

Sponsor details Research & Development Offices Leicester General Hospital Gwendolen Road Leicester England United Kingdom LE5 4PW +44 (0)116 258 4109 carolyn.maloney@uhl-tr.nhs.uk

Sponsor type Hospital/treatment centre

Website http://www.uhl-tr.nhs.uk

ROR https://ror.org/02fha3693

Funder(s)

Funder type Government

Funder Name

Medical Research Council (ref: G0501985; grant ID: 77170)

Alternative Name(s) Medical Research Council (United Kingdom), UK Medical Research Council, MRC

Funding Body Type Government organisation

Funding Body Subtype National government

Location United Kingdom

Results and Publications

Publication and dissemination plan

Not provided at time of registration

Intention to publish date

Individual participant data (IPD) sharing plan

IPD sharing plan summary

Not provided at time of registration

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient- facing?
<u>Results</u> article	results (inflammatory and satellite cells in the quadriceps)	01/11 /2012		Yes	No
<u>Results</u> article	results (ultrasound assessment of lower limb muscle mass)	28/12 /2012		Yes	No
<u>Results</u> article	results (ventilatory requirements of quadriceps resistance training)	05/06 /2014		Yes	No