Benefit of machine learning to diagnose deep vein thrombosis compared to the gold standard ultrasound

Recruitment status No longer recruiting	Prospectively registered		
	☐ Protocol		
Overall study status	Statistical analysis plan		
Completed	[X] Results		
Condition category	[] Individual participant data		
	No longer recruiting Overall study status Completed		

Plain English summary of protocol

Background and study aims

Deep vein thrombosis (DVT) is a term that describes blood clots (thrombi) that can form in the deep veins. The deep leg veins are commonly affected (such as the proximal veins: the femoral vein or the popliteal vein) or the deep veins of the pelvis. The standard approach to making a diagnosis involves an algorithm combining pre-test probability, a blood test called the D-dimer test, and the patient undergoing an ultrasound of the leg veins. Ultrasound is currently completed by a trained expert (e.g. sonographer or radiologist). However, handheld ultrasound probes have recently become available and they have enabled 'app-based' ultrasonography to be performed. ThinkSono has developed software (AutoDVT software) allowing non-specialists to perform DVT ultrasound, hoping it has the same accuracy for diagnosing DVT as the standard ultrasound. If this study has a positive outcome, it would mean that DVT could be diagnosed at the point of care by non-experts such as nurses, junior doctors, GPs and other healthcare staff. By diagnosing DVT early in the clinical pathway (for example, at GP practices), the technology could reduce emergency department admissions and free up specialists to focus on other clinical tasks. These improvements could also potentially reduce the financial burden of the DVT diagnostic service on healthcare systems.

Who can participate?

Patients aged 18 years and over, coming for a check to see if they have a DVT and have symptoms suggesting that they need an ultrasound scan

What does the study involve?

Participants undergo two compression ultrasound scans. One is carried out by a non-radiology staff member (e.g. a nurse) using AI software to guide them and another ultrasound scan will be carried out as already scheduled by a sonographer or radiologist.

What are the possible benefits and risks of participating?

This study will not benefit participants directly in the short term but it may benefit patients having an ultrasound for a DVT in the future. The results from this study will improve knowledge of how software may be able to help diagnose blood clots accurately and quickly. Ultrasound is a

very safe method of confirming a DVT or not and is used already as standard care in hospitals. There are no risks of taking part. The scan does involve some pressing on the leg but if it is painful or participants want to stop they can let the researchers know.

Where is the study run from? Helios Klinikum Emil von Behring, Klinik für Angiologie (Germany)

When is the study starting and how long is it expected to run for? January 2022 to September 2022

Who is funding the study?

- 1. Imperial College London (UK)
- 2. Helios Klinikum Emil von Behring, Klinik für Angiologie (Germany)

Who is the main contact?

Sven Mischkewitz (Sponsor contact), hello@thinksono.com

Contact information

Type(s)

Scientific

Contact name

Mrs Kerstin Nothnagel

ORCID ID

https://orcid.org/0009-0004-5767-8346

Contact details

University of Bristol
Bristol Medical School
Room 1.10 (Desk 3)
Canynge Hall,
Clifton
Bristol
United Kingdom
BS8 2PN
+4915141406431
kerstin.nothnagel@bristol.ac.uk

Additional identifiers

Clinical Trials Information System (CTIS)

Nil Known

ClinicalTrials.gov (NCT)

Nil known

Protocol serial number

V1.0

Study information

Scientific Title

Benefit of machine learning to diagnose deep vein thrombosis compared to the gold standard ultrasound

Study objectives

Measure the sensitivity and specificity of clinical decision-making based on images recorded by a non-specialist using AutoDVT AI-based software versus the ground truth produced by the local imaging specialist.

Ethics approval required

Old ethics approval format

Ethics approval(s)

Approved on 15/03/2022, Ethics Committee of the Berlin Medical Association (Ethik-Kommission der Ärztekammer Berlin), (Working Committee Research II [Arbeitsausschuss Forschung II] Ärztekammer Berlin KdöR, Friedrichstr 16, 10969 Berlin, Germany; +49 30 408 06 26 01; ek@aekb.de), ref: Eth-07/21

Study design

Non-randomized prospective study

Primary study design

Observational

Study type(s)

Diagnostic

Health condition(s) or problem(s) studied

Proximal deep vein thrombosis

Interventions

Patient recruitment

Patients will consent when a DVT ultrasound exam is requested in the angiology department.

An AI-assisted scan with the AutoDVT software is performed by a non-specialist (nurse). A follow-up gold-standard scan is performed by a local specialist (compression ultrasound), i.e. angiologist. That same-day follow-up scan represents the standard of care.

The images collected by the non-specialist are presented to a remote, qualified clinician who evaluated image quality according to the quality scale of the American College of Emergency Physicians (ACEP) and consequently, if the image quality is sufficient, assesses whether the veins of the patient are compressible, incompressible or indeterminate.

Study arms

Single-arm study. Every patient will receive an AI-guided scan which was followed up by a reference scan which represents the standard of care.

Intervention provider

The nursing staff carried out the AI-guided ultrasound scan. They had no prior ultrasound experience at all. The remote, qualified clinician assessing the images collected by the AI-guided scan are qualified to diagnose DVT, i.e., radiologists.

Modes of delivery

The AI-guided scan is performed face-to-face. The images that are presented to the remote, qualified clinician will be evaluated retrospectively via an internet platform. This remote, qualified clinician will not see the patient. The AI-guided scan was carried out in the rooms of the angiology department.

Intervention Type

Device

Phase

Not Applicable

Drug/device/biological/vaccine name(s)

AutoDVT

Primary outcome(s)

Sensitivity and specificity measured using the AI-guided ultrasound and a local imaging specialist performing the gold-standard ultrasound exam at one timepoint. The gold-standard exam is performed on the same day.

Key secondary outcome(s))

Image quality of the AI-guided ultrasound assessed by remote qualified clinicians, according to the American College of Emergency Physicians (ACEP) scoring scale from 1 to 5, at one timepoint

Completion date

01/09/2022

Eligibility

Key inclusion criteria

- 1. Aged 18 years old and over
- 2. Subject can consent and consent has been signed
- 3. Subject has symptoms of DVT and ultrasound is indicated

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Adult

Lower age limit

18 years

Sex

All

Total final enrolment

91

Key exclusion criteria

- 1. Below the age of 18 years old
- 2. No Wells score was calculated prior to the ultrasound
- 3. Distal DVT
- 4. Did not consent

Date of first enrolment

18/04/2022

Date of final enrolment

09/08/2022

Locations

Countries of recruitment

Germany

Study participating centre Helios Emil von Behring Klinikum Zehlendorf

Walterhöferstrasse 11 14165 Berlin Germany Berlin Germany

14165

Sponsor information

Organisation

ThinkSono GmbH

Funder(s)

Funder type

Hospital/treatment centre

Funder Name

Results and Publications

Individual participant data (IPD) sharing plan

The datasets generated and analysed during the current study will be available upon request from Sven Mischkewitz (hello@thinksono.com) if a request is made by relevant authorities and a statement about the use of the data has been made. Anonymised ultrasound data may be shared. No patient data will be shared due to patient confidentiality.

IPD sharing plan summary

Available on request

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Results article		02/01/2025	27/05/2025	Yes	No
Participant information sheet	Participant information sheet	11/11/2025	11/11/2025	No	Yes