A comparison between cardiac output monitoring using (invasive) pulmonary artery catheter and (noninvasive) thoracic electrical bioimpedance | Submission date | Recruitment status No longer recruiting | Prospectively registered | | | |-------------------------------------|---|--|--|--| | 24/05/2017 | | ☐ Protocol | | | | Registration date 01/06/2017 | Overall study status Completed | Statistical analysis plan | | | | | | [X] Results | | | | Last Edited | Condition category | [] Individual participant data | | | | 28/03/2018 | Circulatory System | | | | #### Plain English summary of protocol Background and study aims During cardiac surgery, patients are monitored to evaluate cardiac function. In patients scheduled for cardiac surgery this usually includes either the use of a pulmonary arterie thermodilution catheter (PAC) or endotracheal echocardiography. At the time the study was conducted PAC was the golden standard. Newer devices have come out that need research in order to ensure that they are accurate and precise at measuring cardiac output. The aim of this study is to compare the AesculonTM bioimpedance electrical cardiometry (Aesc) to the pulmonary artery thermodilution catheter (PAC) technique before, during and after cardiac surgery. Who can participate? Adults aged 18 and older who are scheduled for cardiac surgery. #### What does the study involve? Participants who are undergoing cardiac surgery are randomly selected to participate in this study. After induction of anaesthesia, a PAC and the AesculonTM device are placed on the participant. Participants are measured using the standard pulmonary artery catheter and a thoracic electrical bioimpedance monitor. They have four additional electrodes placed on their neck and chest. Data from the monitors are recorded at certain time points to measure the accuracy and precision of the PAC compared to the Aesc. What are the possible benefits and risks of participating? There are no benefits or risks with participating. Where is the study run from? Maastricht University Medical Centre (Netherlands) When is the study starting and how long is it expected to run for? November 2008 to November 2010 Who is funding the study? Maastricht University Medical Centre (Netherlands) Who is the main contact? Mr Boris Cox b.cox@mumc.nl ## **Contact information** #### Type(s) Scientific #### Contact name Mr Boris Cox #### **ORCID ID** http://orcid.org/0000-0001-5906-3792 #### Contact details Maastricht Universitair Medisch Centrum P. Debyelaan 25 PB 5800 Maastricht Netherlands 6202 AZ +31 (0)43 38765606 b.cox@mumc.nl ## Additional identifiers EudraCT/CTIS number **IRAS** number ClinicalTrials.gov number Secondary identifying numbers MEC 08-4-075 ## Study information #### Scientific Title Accuracy, precision and trending ability of electrical cardiometry cardiac output versus pulmonary artery thermodilution method: a prospective study #### Study objectives The aim of this study is to compare the accuracy, precision and trending ability of a thoracic bioimpedance technique with pulmonary artery thermodilution before, during and after surgical intervention #### Ethics approval required Old ethics approval format #### Ethics approval(s) Institutional review board of the Maastricht University Medical Center, 15/12/2008, ref: MEC 08-4-075 #### Study design Prospective observational study #### Primary study design Observational #### Secondary study design Case-control study #### Study setting(s) Hospital #### Study type(s) Diagnostic #### Participant information sheet No participant information sheet available #### Health condition(s) or problem(s) studied Measurement of cardiac output with different devices in patients scheduled for cardiac surgery. #### **Interventions** After obtaining written informed consent of each patient, participants are randomly sampled from patients undergoing cardiac surgery. They receive the standard level of care during surgery. After induction of anesthesia, a pulmonary artery catheter (PAC) and the AesculonTM device are placed on the participant. The index test is a thoracic electrical bioimpedance cardiac output monitor (Aesculon, Osypka Medical, Berlin, Germany). The reference test was a pulmonary artery catheter (Edwards Life sciences Corporation, Irvine, CA, USA, Continuous Cardiac Output VIP catheter with SvO2, model 746F8). The only difference to standard care was the placement of four additional electrocardiography electrodes. Two electrodes are placed in the neck and two are placed at the thoracic level. Only data from standard monitoring and bioimpedance were recorded. There were no benefits or risk for patients taking part in this observational study. All measurements are performed at certain time points and there was no interference with standard care and monitoring. There was no need for follow up within this study group. Measurements are performed at six time points: after induction and prior to incision (T1), prior to cannulation of the aorta (T2), ten minutes after protamine administration (T3), 30 minutes after arrival in the ICU (T4), 1 hour after extubation (T5), and one day post-operatively at 08.00 AM (T6). #### Intervention Type Device #### Primary outcome measure - 1. Accuracy and precision are measured using Bland Altman analysis by comparing results from the clinical gold standard pulmonary artery catheter to the results from the new device, the bioimpedance cardiac output monitor at 6 time points, after induction and prior to incision, prior to cannulation of the aorta, ten minutes after protamine administration, 30 minutes after arrival in the ICU, one hour after extubation, and one day post-operatively. - 2. Polar plot methodology was used to objectify trending ability of the new technique (AesculonTM). #### Secondary outcome measures Our secondary aim was to assess whether the surgical incision, and therefore the interruption of the continuity of the skin of the thoracic cavity and opening of the cavity itself, could be an important factor in the reported discrepancy between the two instruments. #### Overall study start date 01/11/2008 #### Completion date 12/11/2010 ## **Eligibility** #### Key inclusion criteria - 1. Scheduled for cardiac surgery - 2. No contra-indication for the use of the pulmonary artery thermodilution method - 3. Aged 18 and older #### Participant type(s) Patient #### Age group Adult #### Lower age limit 18 Years #### Sex Both #### Target number of participants 50 #### Key exclusion criteria - 1. Contra indication for the use of the pulmonary artery thermodilution method - 2. Under the age of 18 #### Date of first enrolment 18/02/2009 #### Date of final enrolment 18/12/2009 ### Locations #### Countries of recruitment Netherlands #### Study participating centre #### Maastricht University Medical Centre Department of Anesthesiology and Pain Management Maastricht University Medical Center+ Maastricht Prof. Debylaan 25 Maastricht Netherlands 6202 AZ ## **Sponsor information** #### Organisation Maastricht Universitair Medisch Centrum #### Sponsor details P. Debyelaan 25 PB 5800 6202 AZ Maastricht Maastricht Netherlands 6202 AZ +31 (0)43 3876543 secretariaat.metc@mumc.nl #### Sponsor type Hospital/treatment centre #### Website https://www.mumc.nl #### **ROR** https://ror.org/02d9ce178 ## Funder(s) #### Funder type Hospital/treatment centre #### **Funder Name** Maastricht Universitair Medisch Centrum ### **Results and Publications** #### Publication and dissemination plan Planned publication with BioMed Central. ### Intention to publish date 30/09/2017 #### Individual participant data (IPD) sharing plan The datasets generated during and analysed during the current study will be available upon request from Boris Cox at b.cox@mumc.nl #### IPD sharing plan summary Available on request #### **Study outputs** | Output type | Details | Date created | Date added | Peer reviewed? | Patient-facing? | |-----------------|---------|--------------|------------|----------------|-----------------| | Results article | results | 01/09/2017 | | Yes | No |