Transcranial direct current stimulation (tDCS) combined with robotic rehabilitation for upper limbs in stroke

Submission date	Recruitment status No longer recruiting	[X] Prospectively registered		
07/10/2021		☐ Protocol		
Registration date	Overall study status	Statistical analysis plan		
22/03/2022	Completed	[X] Results		
Last Edited	Condition category	Individual participant data		
03/09/2024	Nervous System Diseases			

Plain English summary of protocol

Background and study aims

A stroke is a serious life-threatening medical condition that occurs when the blood supply to part of the brain is cut off. According to the World Health Organization, cerebrovascular accidents (stroke) are the second leading cause of death and the third leading cause of disability. One of the most frequent problems after stroke is upper limb (UL) impairments such as muscle weakness, contractures, changes in muscle tone, and other problems related to coordination of arms, hands, or fingers. These impairments induce disabilities in common movements such as reaching, picking up, or holding objects and difficult activities of daily living (ADLs) such as washing, eating, or dressing, their participation in society, and their professional activities. Most people experiencing this upper limb impairment will still have problems chronically several years after the stroke. Impairment in the upper limbs is one of the most prevalent consequences of stroke. For this reason, rehabilitation is an essential step towards clinical recovery, patient empowerment, and improvement of their quality of life.

Rehabilitation-based robotics have shown moderate efficacy for rehabilitating upper limbs. Noninvasive brain stimulation is a method for modulating electrical activity of the brain. Specifically, transcranial direct current stimulation (tDCS) is useful in the rehabilitation process. The aim of the project is to evaluate the efficacy of combined tDCS with robotic training for motor recovery of the upper limb after stroke.

Who can participate?

Adults diagnosed with stroke (18-85 years old).

What does the study involve?

Rehabilitation programs using tDCS combined with robotic training.

Participants were randomly assigned to the experimental group (EG) or control group (CG). EG participants received 20 individual training sessions with tDCS and robotic training. Each session lasted 20-30 minutes.

CG is a similar protocol but they received sham stimulation, for only 30 seconds.

What are the possible benefits and risks of participating?

The possible benefits of using tDCS combined with robotic treatment in rehabilitation processes with stroke adults include improvement of upper limb mobility and function and improvement in the performance of daily life activities.

The possible adverse effects include fatigue, muscle pain, and headaches.

Where is the study run from?

The study was designed at the University of Castilla La Mancha (Spain) and rehabilitation sessions with technology based on virtual reality were developed in the Neuron Center of Madrid (Spain).

When is the study starting and how long is it expected to run for? July 2020 to August 2022.

Who is funding the study? Investigator initiated and funded.

Who is the main contact?

- 1. Juan Bernal Jiménez, Juanjose.Bernal@uclm.es (primary contact)
- 2. Dra Begoña Polonio-López, Begona.Polonio@uclm.es (primary contact)
- 3. Dra Laura Mordillo, Laura.Mordillo@uclm.es

Contact information

Type(s)

Principal investigator

Contact name

Mr Juan Bernal

ORCID ID

https://orcid.org/0000-0001-7031-1611

Contact details

University of Castile-La Mancha Faculty of Science Health Avenida Real Fábrica de Sedas s/n Talavera de la Reina Spain 45600 +34 678158045 juanjose.bernal@uclm.es

Type(s)

Principal investigator

Contact name

Dr Begoña Polonio López

ORCID ID

https://orcid.org/0000-0003-2922-7519

Contact details

Faculty of Health Sciences
University of Castilla-La Mancha
Av. Real Fábrica de Sedas s/n
Talavera de la Reina
Spain
45600
+34682247830
Begona.Polonio@uclm.es

Additional identifiers

Clinical Trials Information System (CTIS)

Nil known

ClinicalTrials.gov (NCT)

Nil known

Protocol serial number

Nil known

Study information

Scientific Title

Randomized clinical trial of tDCS combined with robotic rehabilitation for upper limbs in stroke

Study objectives

Robotic therapy combined with tDCS enhances motor recovery in stroke patients

Ethics approval required

Old ethics approval format

Ethics approval(s)

Approved 17/07/2020, Clinical Research Ethical Committee of the Talavera de la Reina Integrated Management Area (CEIC del AGI de Talavera de la Reina, Hospital Nuestra Señora del Prado. Ctra. Nacional V, km. 114, 45600, Talavera de la Reina (Toledo), Spain; +34 (0)925 80 36 00 Ext. 86.316; varroyo@sescam.org), ref: 12/2018

Study design

Transversal prospective randomized controlled trial

Primary study design

Interventional

Study type(s)

Treatment

Health condition(s) or problem(s) studied

Motor injuries of the upper limb and functional dependence in adults with stroke

Interventions

Rehabilitation programs using robotic treatment combined with tDCS.

The robot device is Amadeo, Tyromotion.

The assignment to each of the groups was parallel. Participants were randomly assigned to the experimental group (EG) or control group (CG). Participants and therapists were blinded.

Experimental group: participants received 20 sessions of robotic combined with tDCS. Robotic training lasted 20-30 minutes and it was specific finger training. tDCS was applied online with robotic treatment. tDCS lasted 20 minutes.

Control group: participants received a similar robotic protocol but tDCS lasted 30 seconds, and it was a sham intervention. The rest of the protocol was the same as in the experimental group.

Intervention Type

Behavioural

Primary outcome(s)

- 1. The impact of stroke on daily life was measured using the Functional Independence Measure at baseline, at the end of the study (20 sessions), and at 3 months.
- 2. Body functions (International Coaching Federation domains) were measured using the Fugl Meyer Motor Assessment at the end of the study (20 sessions) and at 3 months.
- 3. Activities (International Coaching Federation domains) were measured using ARA-T at the end of the study (20 sessions) and at 3 months.
- 4. Perceived quality of life was measured using the EuroQool-5 L test at baseline, at the end of the study (20 sessions), and at 3 months.
- 5. Satisfaction with the robot device and treatment was measured using the USEQ at baseline, at the end of the study (20 sessions), and at 3 months.

Key secondary outcome(s))

- 1. Muscle tone assessment using modified Ashworth Test at baseline, the end of study (20 sessions), and 3 months.
- 2. Hand strength measured using dynamometer (using robot device) at baseline, the end of study (20 sessions), and 3 months.
- 3. Range of Motion (ROM) measured using goniometry (using robot device) at baseline, the end of study (20 sessions), and 3 months.

Completion date

09/08/2022

Eligibility

Key inclusion criteria

- 1. Age between 18 and 85 years old
- 2. Diagnosed stroke
- 3. Difficulties motor skills of the upper limb
- 4. Dependence in daily life activities
- 5. No other disabling pathology prior to the injury
- 6. Acceptance and signature of the informed consent

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Adult

Lower age limit

18 years

Sex

All

Total final enrolment

21

Key exclusion criteria

- 1. Cognitive impairment (<24 in Mini-mental state exam)
- 2. Severe Aphasia
- 3. Upper limb fractures
- 4. Unresolved vascular problem
- 5. tDCS contraindications such as epilepsy
- 6. No signing informed consent

Date of first enrolment

28/03/2022

Date of final enrolment

04/04/2022

Locations

Countries of recruitment

Spain

Study participating centre University of Castilla La Mancha

Faculty of Science Health Avenida Real Fábrica de Sedas s/n Talavera de la Reina Spain 45600

Study participating centre

Neuron Center

C/ Modesto Lafuente, 45 Madrid Spain 28003

Sponsor information

Organisation

University of Castile-La Mancha

Funder(s)

Funder type

Other

Funder Name

Investigator initiated and funded

Results and Publications

Individual participant data (IPD) sharing plan

The datasets generated during and/or analysed during the current study are/will be available upon request from Juan Bernal Jiménez (JuanJose.Bernal@uclm.es).

IPD sharing plan summary

Available on request

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Results article		06/02/2024	03/09/2024	Yes	No
Participant information sheet	in Spanish		07/10/2021	No	Yes
Participant information sheet	Participant information sheet	11/11/2025	11/11/2025	No	Yes