Deriving a reduced lead system from the 80lead body surface map for the electrocardiographic determination of acute myocardial infarction

Submission date	Recruitment status No longer recruiting	Prospectively registered		
23/08/2007		☐ Protocol		
Registration date 30/05/2008	Overall study status Completed	Statistical analysis plan		
		[X] Results		
Last Edited 27/03/2012	Condition category Circulatory System	[] Individual participant data		

Plain English summary of protocol

Not provided at time of registration

Contact information

Type(s)

Scientific

Contact name

Prof Jennifer Adgey

Contact details

Royal Victoria Hospital Grosvenor Road Belfast United Kingdom BT12 6BA +44 (0)2890 632171 jennifer.adgey@belfasttrust.hscni.net

Additional identifiers

Protocol serial number RGHT000406

Study information

Scientific Title

Study objectives

The aims of the study are to determine the optimal electrocardiographic lead number and positions for the accurate detection of acute Myocardial Infarction (MI).

Ethics approval required

Old ethics approval format

Ethics approval(s)

Office for Research Ethics Committees in Northern Ireland (ORECNI). Date of approval: 15/05/2007 (ref: 07/NIR01/33)

Study design

Non-randomised controlled trial.

Primary study design

Interventional

Study type(s)

Diagnostic

Health condition(s) or problem(s) studied

Acute coronary syndromes

Interventions

All participants will be assessed by both Reduced Lead Body Surface Map and 12 Lead ECG. All management decisions will be made using the 12 Lead ECG only (as is current practice).

Intervention Type

Other

Phase

Not Specified

Primary outcome(s)

Improved diagnostic yield of Body Surface Map over the 12 lead ECG

Key secondary outcome(s))

No secondary outcome measures

Completion date

01/08/2008

Eligibility

Key inclusion criteria

All patients presenting to the Regional Medical Cardiology Centre, Royal Victoria Hospital, with ischaemic type chest pain >20 minutes duration.

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Not Specified

Sex

Αll

Key exclusion criteria

Patients will be excluded if they have the following prior to the initial 12-lead ECG or reduced lead system application:

- 1. Pain < 20 minutes
- 2. Receive fibrinolytic therapy
- 3. Nitrates or glycoprotein inhibitors

Date of first enrolment

01/08/2006

Date of final enrolment

01/08/2008

Locations

Countries of recruitment

United Kingdom

Northern Ireland

Study participating centre Royal Victoria Hospital

Belfast United Kingdom BT12 6BA

Sponsor information

Organisation

The Royal Hospitals (UK)

ROR

https://ror.org/02tdmfk69

Funder(s)

Funder type

Hospital/treatment centre

Funder Name

The Royal Hospitals (UK)

Results and Publications

Individual participant data (IPD) sharing plan

IPD sharing plan summary

Not provided at time of registration

Study outputs

Output type	Details	Date created Date added	Peer reviewed?	Patient-facing?
Results article	results	01/08/2003	Yes	No
Participant information sheet	Participant information sheet	11/11/2025 11/11/2025	No	Yes