A spectral analysis of human brain tissue | Submission date | Recruitment status | Prospectively registered | |-------------------|-------------------------|--| | 30/06/2010 | No longer recruiting | ∐ Protocol | | Registration date | Overall study status | Statistical analysis plan | | 30/06/2010 | Completed | Results | | Last Edited | Condition category | Individual participant data | | 04/10/2017 | Nervous System Diseases | Record updated in last year | #### Plain English summary of protocol Not provided at time of registration ### Contact information Type(s) Scientific #### Contact name Prof William Gray #### Contact details Division of Clinical Neurosciences Southampton General Hospital Tremona Road Southampton United Kingdom SO16 6YD cnsadmin@soton.ac.uk ## Additional identifiers **EudraCT/CTIS** number IRAS number ClinicalTrials.gov number Secondary identifying numbers 7568 ## Study information #### Scientific Title A spectral analysis of human brain tissue: a single-centre non-randomised intra-operative imaging trial #### **Study objectives** When performing surgery it is essential to identify normal and abnormal brain to guide where surgery should be performed. Computed tomography (CT) and magnetic resonance imaging (MRI) guided surgery is expensive and can have its limitations. It has been hypothesised however that the light reflected from the human brain is subtly different between normal and abnormal tissue. This is so subtle that as to not be apparent to the naked eye but may be detectable if the light is split into its individual wavelengths' and analysed by a very sensitive camera. If these differences are detectable then this could form the basis of new ways of making surgery safer. ### Ethics approval required Old ethics approval format #### Ethics approval(s) Southampton and Southwest Hampshire Research Ethics Committee, 22/02/2007, ref: 06/Q1704 /139 #### Study design Single-centre non-randomised interventional diagnosis and screening trial #### Primary study design Interventional #### Secondary study design Non randomised study ### Study setting(s) GP practice ### Study type(s) Diagnostic ### Participant information sheet Not available in web format, please use contact details below to request a patient information sheet ### Health condition(s) or problem(s) studied Topic: Neurological; Subtopic: Neurological (all Subtopics); Disease: Nervous system disorders #### **Interventions** Any patient undergoing craniotomy in the Wessex Neurological Centre will be considered. Appropriate consent will be obtained from the patient. At surgery up to five image acquisitions will be made. Each image acquisition will last up to 2 minutes and will consist of the full spectral analysis at fixed points followed by field images of fixed wavelengths. A photographic image and copy of the MRI scan will also be take to correlate spectral traces with conventional means of identifying normal and abnormal tissue. These images will then be analysed post-operatively and not be used to guide surgery or influence patient management. The main arm of the trial will attempt to differentiate normal and abnormal brain. This will be done in patients under general anaesthetic as described above. The second arm will try to assess if the reflectance of the brain changes with function. This will be a smaller cohort of patients, as they will be undergoing awake craniotomy. During surgery images will be obtained before and during basic tasks performed for standard cortical mapping such as speech and hand squeezing to assess for any changes. Data will be collected on a laptop computer before applying noise reduction and normalising data. Graphical representations of spectroscopic traces will be assessed for unusual signatures and differences between pathological and non-pathological tissue and between functioning and non-functioning cortex assess using a student's t-test. Data will be stored anonymously on a networked university computer for up to ten years. The duration on the intervention is 10 minutes added to the usual surgery time. This group of patients are not followed up for trial purposes. There are no treatment arms here: images are acquired for research purposes without any management implications for the individual patients. #### Intervention Type Other #### Phase Not Applicable #### Primary outcome measure Difference in reflection between normal brain tissue and abnormal brain tissue, acquired at the time of image acquisition #### Secondary outcome measures No secondary outcome measures ### Overall study start date 01/06/2007 ### Completion date 01/06/2012 ## **Eligibility** #### Key inclusion criteria Any patient (over 16 years) undergoing craniotomy in Wessex Neurological Centre #### Participant type(s) **Patient** #### Age group Adult #### Sex Both ### Target number of participants Planned sample size: 200 #### Key exclusion criteria - 1. Aged less than 16 years - 2. Pregnancy - 3. Prisoners - 4. Patients incapable of consent #### Date of first enrolment 01/06/2007 #### Date of final enrolment 01/06/2012 ### Locations #### Countries of recruitment England **United Kingdom** ### Study participating centre Southampton General Hospital Southampton United Kingdom SO16 6YD ## Sponsor information #### Organisation University of Southampton (UK) ### Sponsor details Aldermoor Close Southampton England United Kingdom SO16 5ST #### Sponsor type University/education #### Website http://www.soton.ac.uk/ #### ROR https://ror.org/01ryk1543 ## Funder(s) ### Funder type Government #### **Funder Name** National Institute for Health Research (NIHR) (UK) - Central Commissioning Facility (CCF): New and Emerging Applications of Technology (NEAT) Programme ### **Results and Publications** ### Publication and dissemination plan Not provided at time of registration Intention to publish date Individual participant data (IPD) sharing plan ### IPD sharing plan summary Not provided at time of registration