Auditory response improvement in young adults by digital auditory training program | Submission date | Recruitment status Recruiting | Prospectively registered | | | |-------------------------------|---|--|--|--| | 25/01/2024 | | ☐ Protocol | | | | Registration date 26/02/2024 | Overall study status Ongoing | Statistical analysis plan | | | | | | Results | | | | Last Edited 14/02/2024 | Condition category
Ear, Nose and Throat | Individual participant data | | | | | | Record updated in last year | | | # Plain English summary of protocol Background and study aims Auditory Training (AT) has mainly been used since the early 2000s. Two primary assessments have been carried out to evaluate AT performance. The first assessment aimed to measure improvements in tasks defined by auditory abilities. It involved pre- and post-training evaluations, with task results and behavioral tests compared to assess progress. These tasks have encompassed audiological assessments and specific training techniques unique to each study. The second assessment focused on electrophysiological responses before and after AT, primarily using auditory evoked potentials (AEPs). In a smaller number of cases, training performance was evaluated using alternative tests, some of which examined the usability and validation of the applied methodology. The effects of AT on auditory response and perception have been studied using various means and methodologies. It has been proven to be effective in enhancing auditory skills, including general sensory, social, and cognitive skills, among individuals with hearing impairment, intervention rehabilitation needs, and auditory disorders. A substantial body of literature exists on AT, using diverse training skills for different populations. A recent addition to this field involves assessing the usability and experience of interfaces in the context of AT effects. The effects of this structure, as highlighted by the authors, primarily hinges on auditory experience. Auditory tasks and exercises, even the simplest ones, are influenced by higher-level functions such as memory, motivation, and decision-making. Furthermore, it has been demonstrated that long-term changes in auditory cortical neuronal single-unit or population activity, integral to the sound acoustic experience, primarily result from the differential engagement of similar neural mechanisms. This study aims to measure improvement in auditory discrimination response in game-based AT and compare it to traditional AT methodology performance. Who can participate? Healthy volunteers aged between 18 and 30 years old What does the study involve? The study aims to recruit and enrol a total of 75 participants, with an anticipated sample rejection of around 20%. Each participant will be randomly assigned to one of three groups— non-game-based auditory training (AT), game-based AT, and previous stimulation game-based AT. The training will be conducted remotely over 12 weeks using participants' personal computers. Electrophysiology (EEG) will be employed to measure auditory discrimination, including pitch, intensity, localization, and time, both before and after the training sessions. What are the possible benefits and risks of participating? Potential participant benefits of AT are to improve auditory processing discrimination skills (pitch, localization, intensity and time). Within these benefits, participants will be able to improve in distinguishing between two different sounds with tiny differences. All registers and assessments including audiometry and AEPs are non-invasive, which will not place participants at higher risk other than listening. Any medical or clinical occurrence related to or not to the research procedure, will be managed as an adverse event, and treated or reported according to institutional health services protocol, mainly considering participant safety and health. Where is the study run from? Tecnologico Monterrey When is the study starting and how long is it expected to run for? January 2024 to January 2026 Who is funding the study? Monterrey Institute of Technology and Higher Studies (Instituto Tecnológico y de Estudios Superiores de Monterrey) Who is the main contact? Sergio Mora Camargo, A01336974@tec.mx # Contact information # Type(s) Public, Scientific, Principal Investigator #### Contact name Mr Sergio M-Cam #### Contact details 13 mayo no 17 CDMX Mexico 03820 +525526904740 A01336974@tec.mx # Additional identifiers EudraCT/CTIS number #### **IRAS** number # ClinicalTrials.gov number Nil known # Secondary identifying numbers EHE-2023-11 # Study information #### Scientific Title Neuro-audiological measurement of the auditory system response after digital auditory training ## **Study objectives** Game-based auditory training provokes better auditory system responses than conventional training methodologies. ## Ethics approval required Ethics approval required ## Ethics approval(s) Approved 13/11/2023, Comite Institucional de Etica en la Investigacion Instituto Tecnologico y de Estudios Superiores de Monterrey (Av. Eugenio Garza Sada 2501 Sur, Tecnologico, Monterrey, N.L., 64849, Mexico; +52 81 8358 2000; mario.alvarez@tec.mx), ref: EHE-2023-11 # Study design Interventional randomized controlled trial # Primary study design Interventional # Secondary study design Randomised controlled trial # Study setting(s) School # Study type(s) Efficacy # Participant information sheet See study outputs table # Health condition(s) or problem(s) studied Auditory training for normal-hearing young adults #### **Interventions** A total of 75 participants will be recruited and enrolled in the study predicting a sample rejection of 20%. Each of them will be randomly assigned to one of three groups (non-game-based auditory training (AT), game-based AT and previous stimulation game-based AT) depending on the training methodology they will receive for the following 12 weeks, remotely using their PC. Auditory discrimination (pitch, intensity, localization and time) will be measured by electrophysiology (EEG) before and after training. Assignments of each participant will be randomized using a simple randomization 1:1:1 allocation ratio to select the group for the training methodology, avoiding bias in trials. No blinding will be involved within participants or personnel who analyze data since they must know which group they belong to, so instructions can be explained and clearly understood. ## Intervention Type Behavioural #### Primary outcome measure Auditory hearing and discrimination thresholds are measured using audiometry (perceptual auditory responses (level and frequencies)) and auditory evoked potentials (auditory brainstem response (ABR; amplitude and latency), mismatch negativity (MMN; amplitude and latency), and P3 (parietal amplitude and latency)) at baseline and 3 months ## Secondary outcome measures Secondary auditory training performance measured using data collected about key performance indicators (time, hit rate, attempts) during training (three months duration) #### Overall study start date 14/02/2022 #### Completion date 14/02/2026 # **Eligibility** #### Key inclusion criteria - 1. Healthy volunteers aged between 18 and 30 years old - 2. Normal hearing pure-tone thresholds ≤20 dB HL across frequencies 125-8000 Hz previously evaluated by audiometry #### Participant type(s) Healthy volunteer #### Age group Adult #### Lower age limit 18 Years #### Upper age limit 30 Years #### Sex Both ## Target number of participants 3 clusters of 25 participants each #### Key exclusion criteria - 1. Participants who do not sign the informed consent - 2. Participants who present with hearing loss or impairment pure-tone average >30 dB HL, that cannot fulfil the required time for the AT - 3. Pregnancy - 4. Frequently consuming medicines that can alter the participant's state #### Date of first enrolment 01/02/2024 #### Date of final enrolment 01/03/2026 # Locations #### Countries of recruitment Mexico # Study participating centre Tecnologico Monterrey Av. Eugenio Garza Sada 2501 Sur, Tecnológico Monterrey, N.L. Mexico 64849 # **Sponsor information** #### Organisation Consejo Nacional de Humanidades, Ciencias y Tecnologías #### Sponsor details Av. Insurgentes Sur 1582 Mexico City Mexico 03940 +52 5553227700 cca@conahcyt.mx # Sponsor type #### Government #### Website https://conahcyt.mx/ #### **ROR** https://ror.org/059ex5q34 # Funder(s) # Funder type Research organisation #### Funder Name Instituto Tecnológico y de Estudios Superiores de Monterrey #### Alternative Name(s) Tecnológico de Monterrey, Tec de Monterrey, Monterrey Institute of Technology, Monterrey Institute of Technology and Higher Education, ITESM, Tec # **Funding Body Type** Private sector organisation # **Funding Body Subtype** Other non-profit organizations #### Location Mexico # **Results and Publications** # Publication and dissemination plan With scientific dissemination purposes, once analysis is concluded research it is intended to publish results as original research paper, analyzing auditory processing discrimination results through AT performance and electrophysiological measurements. Research would be published in journals related to auditory health, auditory neuroscience, or physiological acoustics by the end of study. With transparency purposes participants' measurements data will also intended to be published by the same date, so it can be available for further research. # Intention to publish date 01/02/2026 # Individual participant data (IPD) sharing plan With transparency purposes participants' measurements data will also intended to be published by the end of 2025 in publicly database repository, so it can be available for further research. **IPD sharing plan summary**Stored in publicly available repository # Study outputs | Output type | Details | Date created | Date added | Peer reviewed? | Patient-facing? | |-------------------------------|---------|--------------|------------|----------------|-----------------| | Participant information sheet | | | 14/02/2024 | No | Yes |