

The effect of a ketone drink on blood glucose levels in people with type 2 diabetes

Submission date	Recruitment status	<input checked="" type="checkbox"/> Prospectively registered
16/02/2024	No longer recruiting	<input type="checkbox"/> Protocol
Registration date	Overall study status	<input type="checkbox"/> Statistical analysis plan
19/02/2024	Completed	<input type="checkbox"/> Results
Last Edited	Condition category	<input type="checkbox"/> Individual participant data
28/01/2025	Nutritional, Metabolic, Endocrine	<input type="checkbox"/> Record updated in last year

Plain English summary of protocol

Background and study aims

Ketones are naturally produced by our body and can affect our blood sugar levels. Ketones could be important in the treatment of type 2 diabetes (T2D). The purpose of this research is to determine if a ketone drink can lower blood sugar in people with T2D following a meal. This research will provide new knowledge about the regulation of blood sugar. This may also inform if ketone drinks could be used as a treatment for T2D.

Who can participate?

We are inviting 12 adults between the ages of 41 and 70 with T2D to take part.

What does the study involve?

The study involves:

A short telephone call with the researcher

A screening visit with a questionnaire and a blood sample

Two 'priming visits' to our laboratory to ingest a 'labelled water' drink, each followed by a 'test visit' the next day

Eating a meal on the day before the test visits

Skipping breakfast before your test visits

Resting on a bed for 13 hours on each test visit when a small amount of glucose (sugar) will be infused into the arm and regular blood samples will be taken

Consuming 2 ketone drinks on one of the test visits

Consuming 2 milkshakes on both of the test visits

What are the possible benefits and risks of participating?

We cannot promise any specific benefits to participants personally. At the end of the study, participants can request results about how their body responded to the ketone drink. The ketone drink is commercially available so there may be financial benefit to companies that sell ketones in the future.

The risks involved in this study are minimal. We will not ask participants to change any of their usual treatment or care. If we find any results that could indicate a previously undiagnosed disease or illness, we will tell participants and advise them to speak to their GP. The ketone drink is commercially available (<https://www.deltaketones.com>) and has been given to people with

type 2 diabetes before with no side effects. Participants will skip breakfast on each of the test days so may feel hungry for a few hours. The milkshake we give after 2.5 hours of the visit should stop them feeling hungry for the next 4.5 hours of the visit until they receive another milkshake. We will give them something to eat and drink before they go home. Insertion of needles may cause some temporary discomfort. The investigators are trained and experienced in all aspects of these procedures. Any concerns that participants may have about any of the procedures will be addressed in full by the researchers prior to participants giving their consent to participate.

Where is the study run from?

Nutritional Physiology Research Unit, St Luke's Campus, University of Exeter, Exeter, UK.

When is the study starting and how long is it expected to run for?

November 2023 to January 2026

Who is funding the study?

Medical Research Council (UK)

Who is the main contact?

Professor Francis Stephens, F.B.Stephens@exeter.ac.uk

Dr George Pavis, G.Pavis@exeter.ac.uk

Contact information

Type(s)

Public, Scientific, Principal investigator

Contact name

Prof Francis Stephens

ORCID ID

<https://orcid.org/0000-0001-6312-5351>

Contact details

University of Exeter

Exeter

United Kingdom

EX1 2LU

+44 1392722157

f.b.stephens@exeter.ac.uk

Type(s)

Public, Scientific

Contact name

Dr George Pavis

ORCID ID

<https://orcid.org/0000-0002-3054-5031>

Contact details

University of Exeter
Exeter
United Kingdom
EX1 2LU
+44 1392725906
g.pavis@exeter.ac.uk

Additional identifiers

Clinical Trials Information System (CTIS)

Nil known

ClinicalTrials.gov (NCT)

NCT06324669

Protocol serial number

4765060

Study information

Scientific Title

Investigating the blood glucose lowering effect of exogenous ketone ingestion in people with type 2 diabetes

Study objectives

It is hypothesised that the antilipolytic effect of β -hydroxybutyrate reduces endogenous glucose production and/or increases glucose clearance

Ethics approval required

Ethics approval required

Ethics approval(s)

approved 21/11/2023, FHLS Sports and Health Sciences Ethics Committee (University of Exeter, Exeter, EX1 2LU, United Kingdom; +44 300 555 0444; cgr-reg@exeter.ac.uk), ref: 4765060

Study design

Single-centre interventional randomized single-blind placebo-controlled crossover study

Primary study design

Interventional

Study type(s)

Other

Health condition(s) or problem(s) studied

Type 2 diabetes

Interventions

Participants will visit the laboratory for baseline screening to assess their eligibility. Thereafter they will undergo 2 trials, with trial order (ketone or placebo) randomised using excel 'rand'

function. On day 1 participants will visit the laboratory to consume 'heavy water' (deuterium oxide). On day 2 participants will return and undergo a 13 h test day. After placement of cannulas and the initiation of stable isotope tracer infusion, participants will receive a 100 mL flavoured drink containing 0.3 g/kg ketone monoester ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate; ΔG®, University of Oxford; <https://www.deltaketones.com>) or maltodextrin placebo with stevia and bitter agent to flavour match. The ketone ester is commercially available, is not contraindicated for diabetes medication, the dose is within the guidelines, and it has been used several times before in patients with type 2 diabetes. Participants will then consume a mixed macronutrient study beverage (Ensure Plus, Abbott Nutrition), and have blood samples taken at regular intervals for 4 h. Participants will receive a second dose of their allocated condition (ketone or placebo), consume a second mixed macronutrient beverage, and have blood samples taken for a second 4 h period.

Intervention Type

Supplement

Primary outcome(s)

Rate of endogenous glucose production over 4 hours in response to a meal measured by blood sample

Key secondary outcome(s)

1. Total rate of glucose appearance measured using the change in glucose enrichment/concentration over 4 and 8 hours following a meal
2. Exogenous rate of glucose appearance measured using the change in glucose enrichment/concentration over 4 and 8 hours following a meal
3. Total rate of glucose disappearance measured using the change in glucose enrichment/concentration over 4 and 8 hours following a meal
4. Rate of gluconeogenesis measured using the change in glucose enrichment/concentration over 4 and 8 hours following a meal
5. Rate of glycogenolysis measured using the change in glucose enrichment/concentration over 4 and 8 hours following a meal
6. Beta-cell function using dynamic modelling of insulin/c-peptide secretion over 4 and 8 hours following a meal
7. Insulin concentration using ELISA assay over 4 and 8 hours following a meal
8. glucagon concentration using ELISA assay over 4 and 8 hours following a meal
9. GLP-1 using ELISA assay over 4 and 8 hours following a meal
10. GIP concentration using ELISA assay over 4 and 8 hours following a meal
11. Glycerol concentration using colorimetric assay over 4 and 8 hours following a meal
12. Free fatty acids using colorimetric assay over 4 and 8 hours following a meal
13. Ketone concentration using colorimetric assay over 4 and 8 hours following a meal
13. Energy expenditure using indirect calorimetry over 4 and 8 hours following a meal

Completion date

31/01/2026

Eligibility

Key inclusion criteria

1. Aged 41-70 years old
2. Body mass index 27-40 mg/m²
3. Type 2 diagnosis for more than 1 year
4. HbA1c >6%

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Adult

Lower age limit

41 years

Upper age limit

70 years

Sex

All

Total final enrolment

15

Key exclusion criteria

1. Currently following ketogenic diet
2. Use of insulin
3. HbA1c >10%
4. Recent weight loss (>5kg in 6 months)
5. Recent eGFR <30mL/min
6. Heart failure
7. Substance abuse
8. Cancer
9. Myocardial infarction within 6 months
10. Pregnancy or consideration of
11. Use of antipsychotic drugs

Date of first enrolment

15/03/2024

Date of final enrolment

28/01/2025

Locations

Countries of recruitment

United Kingdom

England

Study participating centre

University of Exeter

Stocker Road

Exeter

United Kingdom

EX4 4PY

Sponsor information

Organisation

University of Exeter

ROR

<https://ror.org/03yghzc09>

Funder(s)

Funder type

Research council

Funder Name

Medical Research Council

Alternative Name(s)

Medical Research Council (United Kingdom), UK Medical Research Council, MRC

Funding Body Type

Government organisation

Funding Body Subtype

National government

Location

United Kingdom

Results and Publications

Individual participant data (IPD) sharing plan

The anonymised datasets generated during and/or analysed during the current study will be stored in an institutional and/or publicly available repository, such as FigShare

IPD sharing plan summary

Stored in publicly available repository

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Participant information sheet	Participant information sheet	11/11/2025	11/11/2025	No	Yes