Testing an artificial intelligence algorithm for detecting newborn hip dysplasia on ultrasound scans

Submission date 18/06/2024	Recruitment status No longer recruiting	Prospectively registered
Registration date	Overall study status	 Protocol Statistical analysis plan
19/06/2024	Completed	[_] Results
Last Edited	Condition category Neonatal Diseases	 Individual participant data Record updated in last year
19/06/2024	Neonalal Diseases	

Plain English summary of protocol

Background and study aims

The study aims to evaluate the impact of an AI algorithm on the diagnostic accuracy, speed and confidence of healthcare professionals in diagnosing developmental dysplasia of the hip (DDH) on ultrasound scans. The study will involve 10 readers, who will interpret 70 ultrasound scans of baby hips, with and without AI assistance. The scans will include 35 normal and 35 abnormal cases, all of which have been obtained during routine screening in the NHS. The study will also assess the stand-alone performance of the AI algorithm.

Who can participate?

Consultants/attendings (specialising in Paediatric Orthopaedic Surgery) and registrars/residents. Specialist physiotherapists who take part in hip screening as part of their clinical practice.

What does the study involve?

10 readers of varying seniority will be recruited from eight NHS Trusts. This will include five consultant/attending surgeons, four registrars/residents and one specialist physiotherapist. Readers will interpret each scan with and without AI assistance, with an intervening 2-week "washout" period. Each reader will mark seven anatomical points (landmarks, used to determine the diagnosis) in each scan. They will provide their overall confidence score (scale of 1 to 5, 1 = not confident, 5 = very confident) in annotating all the points apart from the labrum. Using a panel of two paediatric orthopaedic surgeons who specialise in DDH as ground truth, the stand-alone performance of the AI algorithm will assessed, alongside its impact on reader's accuracy, mean review time per scan and self-reported diagnostic confidence.

What are the possible benefits and risks of participating?

The results may show the utility of the AI algorithm as an assistive diagnostic tool. There are no risks of participating.

Where is the study run from?

Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford (UK)

When is the study starting and how long is it expected to run for? February 2024 to January 2025

Who is funding the study? National Institute of Health and Care Research (NIHR) (UK)

Who is the main contact? Mr Abhinav Singh, Abhinav.singh@ndorms.ox.ac.uk

Contact information

Type(s) Public, Scientific, Principal Investigator

Contact name Mr Abhinav Singh

ORCID ID https://orcid.org/0000-0002-7329-6792

Contact details Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences University of Oxford Botnar Research Centre Old Road Oxford United Kingdom OX3 7LD +44 (0)1865227374 Abhinav.singh@ndorms.ox.ac.uk

Additional identifiers

EudraCT/CTIS number Nil known

IRAS number 316325

ClinicalTrials.gov number Nil known

Secondary identifying numbers IRAS 316325

Study information

Scientific Title

Developing and testing computer-assisted diagnostic tools for screening of developmental dysplasia of the hip in newborns: a multi-reader multi-case study

Acronym

DeTeCT DDH

Study objectives

An assistive AI algorithm can improve the diagnostic accuracy, speed and self-reported confidence of clinicians in diagnosing developmental dysplasia of the hip (DDH) on ultrasound scans.

Ethics approval required

Ethics approval not required

Ethics approval(s)

Approved 14/03/2023, Health Research Authority (2 Redman Place, Stratford, London, E20 1JQ, UK; +44 (0)2071048000; approvals@hra.nhs.uk), ref: 23/HRA/0966

REC approval was waived for the collection of a retrospective fully anonymised dataset. Ethical approval is not required for the multi-reader multi-case study of healthcare professionals.

Study design Retrospective multicentre and multireader observational cohort study

Primary study design Observational

Secondary study design Cohort study

Study setting(s) Medical and other records, University/medical school/dental school

Study type(s) Diagnostic, Safety, Efficacy

Participant information sheet Not applicable

Health condition(s) or problem(s) studied

Developmental dysplasia of the hip in newborns, diagnosed by ultrasound scan

Interventions

A retrospective dataset of 70 newborn ultrasound scans will be compiled to include 35 normal and 35 abnormal (dysplastic [25]/dislocated [10]) hips. The case balance is intended to better mimic clinical practice whilst still being statistically powered to detect a suspected difference in accuracy.

10 readers of varying seniority will be recruited from eight NHS Trusts. This will include five consultant/attending orthopaedic surgeons, four orthopaedic registrars/residents and one

specialist physiotherapist. Readers will interpret each scan with and without AI assistance in two different sessions. There will be an intervening 2-week "washout" period to minimise reader memory of the reviewed scans.

Each reader will mark seven anatomical points (landmarks) used to determine the diagnosis on each scan. They will provide their overall confidence score (scale of 1 to 5, 1= not confident, 5= very confident) in annotating all the points apart from the labrum. Using a panel of two paediatric orthopaedic surgeons who specialise in DDH as ground truth (reference standard), the stand-alone performance of the AI algorithm will assessed, alongside its impact on the reader's accuracy, mean review time per scan and self-reported diagnostic confidence. Subgroup analysis will be performed by the seniority of the reader.

Intervention Type

Other

Primary outcome measure

Reader and AI algorithm performance will be evaluated as sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and Area Under Receiver Operating Characteristic Curve (AUC). Where the hip is abnormal on the ultrasound and readers correctly identify this classification as abnormal, it will be counted as a true positive, an incorrect diagnosis of normal by the reader will be a false negative. Where the hip is normal on the ultrasound, its correct classification by the reader will be a true negative and an incorrect classification will be a false positive.

The performance measures listed above will be compared for each reader with and without AI assistance. The performance of the AI algorithm alone will also be evaluated as a comparative measure.

Secondary outcome measures

Reader speed will be evaluated as the mean review time per scan, with and without AI assistance. Reader confidence will be evaluated via a self-reported score (scale of 1 to 5, 1= not confident to 5 = fully confident), with and without AI assistance.

Overall study start date

01/02/2024

Completion date 31/01/2025

Eligibility

Key inclusion criteria

Consultants/attendings (specialising in Paediatric Orthopaedic Surgery) and registrars/residents. Specialist physiotherapists who take part in hip screening as part of their clinical practice.

Participant type(s) Health professional

Age group Adult **Lower age limit** 18 Years

Sex Both

Target number of participants 10

Total final enrolment 10

Key exclusion criteria

Any healthcare professional who does not review newborn hip ultrasound scans (either autonomously or under direct supervision) in their clinical practice

Date of first enrolment 01/03/2024

Date of final enrolment 31/05/2024

Locations

Countries of recruitment England

United Kingdom

Study participating centre University of Oxford Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences Botnar Research Centre Old Road Oxford United Kingdom OX3 7LD

Study participating centre

University Hospital Southampton NHS Foundation Trust Southampton General Hospital Tremona Road Southampton United Kingdom SO16 6YD

Study participating centre Norfolk and Norwich University Hospitals NHS Foundation Trust Colney Lane Colney Norwich United Kingdom NR4 7UY

Study participating centre

St George's University Hospitals NHS Foundation Trust Blackshaw Road London United Kingdom SW17 0QT

Study participating centre

Royal National Orthopaedic Hospital NHS Trust Brockley Hill Stanmore United Kingdom HA7 4LP

Study participating centre

Mid and South Essex NHS Foundation Trust Prittlewell Chase Westcliff-on-sea United Kingdom SS0 0RY

Study participating centre

The Hillingdon Hospitals NHS Foundation Trust Pield Heath Road Uxbridge United Kingdom UB8 3NN

Study participating centre Imperial College Heathcare NHS Trust The Bays South Wharf Road London United Kingdom W2 1NY

Study participating centre Epsom and St Helier University Hospitals NHS Trust St Helier Hospital Wrythe Lane Carshalton United Kingdom SM5 1AA

Study participating centre Alder Hey Children's NHS Foundation Trust Alder Hey Hospital Eaton Road West Derby Liverpool United Kingdom L12 2AP

Sponsor information

Organisation University of Oxford

Sponsor details Research Governance, Ethics & Assurance Boundary Brook House Churchill Drive Oxford England United Kingdom OX3 7GB +44 (0)1865616480 RGEA.Sponsor@admin.ox.ac.uk

Sponsor type University/education

Website http://www.ox.ac.uk/ ROR https://ror.org/052gg0110

Funder(s)

Funder type Government

Funder Name National Institute for Health and Care Research

Alternative Name(s)

National Institute for Health Research, NIHR Research, NIHRresearch, NIHR - National Institute for Health Research, NIHR (The National Institute for Health and Care Research), NIHR

Funding Body Type Government organisation

Funding Body Subtype National government

Location United Kingdom

Funder Name

InnovateUK

Alternative Name(s)

National Institute for Health Research, NIHR Research, NIHRresearch, NIHR - National Institute for Health Research, NIHR (The National Institute for Health and Care Research), NIHR

Funding Body Type Government organisation

Funding Body Subtype National government

Location United Kingdom

Results and Publications

Publication and dissemination plan

Planned publication in a high-impact peer-reviewed journal

Intention to publish date

31/12/2024

Individual participant data (IPD) sharing plan

All data generated or analysed during this study will be included in the subsequent results publication

IPD sharing plan summary

Published as a supplement to the results publication