Periprosthetic bone mineral density (BMD) around two different stems in total hip arthroplasty

Submission date 06/08/2010	Recruitment status No longer recruiting	Prospectively registered
		[_] Protocol
Registration date	Overall study status	Statistical analysis plan
18/08/2010	Completed	[_] Results
Last Edited	Condition category	Individual participant data
18/08/2010	Musculoskeletal Diseases	[] Record updated in last year

Plain English summary of protocol

Not provided at time of registration

Contact information

Type(s) Scientific

Contact name Prof Christina Stukenborg-Colsman

Contact details Orthopädische Klinik Medizinische Hochschule Hannover im Annastift Anna-von-Borries-Str. 1-7 Hannover Germany 30625 christina.stukenborg@ddh-gruppe.de

Additional identifiers

EudraCT/CTIS number

IRAS number

ClinicalTrials.gov number

Secondary identifying numbers N/A

Study information

Scientific Title

Periprosthetic bone mineral density (BMD) around two different stems in total hip arthroplasty: an observational longitudinal study

Study objectives

To monitor the bone mineral density (BMD) around a well known approved femoral implant and a new short stem design femoral implant. The data is used to validate a finite element model of both implants.

Ethics approval required Old ethics approval format

Ethics approval(s) Local ethics committee approved on the 23rd May 2006 (ref: 4226)

Study design Observational longitudinal study

Primary study design Observational

Secondary study design Cohort study

Study setting(s) Hospital

Study type(s) Screening

Participant information sheet

Not available in web format, please use the contact details below to request a patient information sheet

Health condition(s) or problem(s) studied

Osteoarthritis of the hip

Interventions

In all patients the Metha short stem (monoblock with 130° CCD angle and 0° ante-, retrotorsion) or the Bicontact stem (AESCULAP AG, Tuttlingen, Germany) was implanted by three experienced senior surgeons over a standard lateral approach in supine position. The cementless short stem implant is made of a titanium forged alloy and has a proximal rough titanium micro-porous coating. An additional 20 µm dicalciumphosphate layer is applied electrochemically. The stem is anchored metaphyseally within the closed ring of the femoral neck. The Bicontact stem is designed for proximal fixation and load transfer to bone. According to the implant design and the Plasmapore-coated proximal part the secondary implant stability is achieved by proximal

anchoring and cancellous bone ingrowth. Pre-operatively, 1 week after surgery, 6 month and 12 month after implantation the patients were examined clinically (Harris Hip Score) and underwent DXA examinations.

All patients underwent full weight bearing post-operatively. DXA scans were performed using a HOLOGIC Discovery A S/N 80600 device (Hologic Inc., Waltham, MA). The BMD (g/cm2) of the operated hip was measured using the "metal-removal hip" scanning mode. Conventional Gruen's zones were adapted to the short stem design. Each patients individual ROIs were saved on the Hologic system and were used for all following measurements to reduce bias. The images were analyzed using the dedicated Windows analysis software (version 11.2). The patients were placed in supine position with the affected leg in 20° internal rotation. The foot was secured in the Hologic foot positioning device in order to obtain reproducible rotation in all patients to limit measurement errors, since it has been demonstrated that rotation influences the BMD.

DXA precision was assessed on all subjects. The patients underwent sequential DXA examinations of the contralateral unoperated hip and the proximal femur - taken preoperatively and one week later. Additional quality controls were done every morning for the DXA equipment according to the manufacturer's guidelines, to verify the stability of the system, and did not show any shift or drift during the entire study period. The device used in our study was therefore chaacterised as stable. The same observer (ML) analysed all DXA examinations. A Student's t-test was used to test the hypothesis of a difference between the means at the different measurement time points in the Harris hip Score as a normal distribution was ascertained. The Shapiro-Wilk-tests did not show a normal distribution in the DXA measurements, the Wilcoxon signed-ranks test was used to statistically compare the density changes over one year. A p<0.005 was considered significant. Data analysis was performed with SPSS (11.05 SPSS Inc. Chicago, Illinois). After two years the Bicontact branch was ended, but the Metha branch will continue for additional two years.

Intervention Type

Other

Phase Not Applicable

Primary outcome measure

BMD (g/cm^2) in Gruen Zones 1 - 7 per DEXA, measured 1 day pre-operatively, and 1 week, 6 months, 1 year, 2 years, 3 years and 4 years post-operatively.

Secondary outcome measures

Harris Hip Score per questionaire and clinical examination, measured 1 day pre-operatively, and 1 week, 6 months, 1 year, 2 years, 3 years and 4 years post-operatively.

Overall study start date 01/06/2008

Completion date 31/12/2014

Eligibility

Key inclusion criteria

1. Indication for unilateral implantation of the Bicontact stem or the Metha short stem due to osteoarthritis of the hip

2. Patients' ages between 35 and 70 years of either sex

3. Written informed consent

Participant type(s)

Patient

Age group

Adult

Sex

Both

Target number of participants

25 per implant, 50 in total

Key exclusion criteria

- 1. Manifestly overweight (body mass index [BMI] greater than 35 kg/m^2)
- 2. History of previous surgeries on the same hip
- 3. Femoral fractures
- 4. Metabolic bone diseases
- 5. Use of steroids or other drugs affecting bone metabolism
- 6. Intraoperative cracks
- 7. Severe osteoarthritis of the contralateral hip
- 8. Received total hip arthroplasty (THA) on the contralateral hip during the study period

9. Patients in whom an event leading to restricted weight bearing on the ipsi- or contralateral hip occurred

Date of first enrolment

01/06/2008

Date of final enrolment 31/12/2014

Locations

Countries of recruitment Germany

Study participating centre Orthopädische Klinik Medizinische Hochschule Hannover im Annastift Hannover Germany 30625

Sponsor information

Organisation German Research Council (Deutsche Forschungsgemeinschaft [DFG]) (Germany)

Sponsor details

Kennedyallee 40 Bonn Germany 53170 +49 (0)228 885 1 postmaster@dfg.de

Sponsor type Research council

Website http://www.dfg.de

ROR https://ror.org/018mejw64

Funder(s)

Funder type Research council

Funder Name

German Research Council (Deutsche Forschungsgemeinschaft [DFG]) (Germany) (ref: SFB 599, D6)

Results and Publications

Publication and dissemination plan Not provided at time of registration

Intention to publish date

Individual participant data (IPD) sharing plan

IPD sharing plan summary Not provided at time of registration