Assessing optimal timing for childhood vaccines in Uganda | Submission date 05/02/2021 | Recruitment status No longer recruiting | [X] Prospectively registered | | | |-----------------------------------|---|---|--|--| | | | [X] Protocol | | | | Registration date
17/02/2021 | Overall study status Completed | Statistical analysis plan | | | | | | Results | | | | Last Edited 28/06/2024 | Condition category
Infections and Infestations | Individual participant data | | | | | | Record updated in last year | | | #### Plain English summary of protocol Background and study aims Vaccines help protect our bodies against diseases. When a child comes into contact with a disease against which they have been vaccinated, their body will be able to recognise and fight the disease. Without vaccines, children are at increased risk of catching many serious diseases. The World Health Organization (WHO) recommends that all children receive a number of different vaccines at specific ages. One of the vaccines recommended protects against 5 diseases called diphtheria, tetanus, whooping cough, hepatitis B and Haemophilus influenzae type b (Hib) infection, which can cause pneumonia and meningitis. This vaccine is sometimes called a DTP-containing vaccine. Many countries around the world gives this vaccine at different time points and it is not known which schedule is best. This study aims to determine the best schedule for the DTP-containing vaccine. Who can participate? Children aged between 42 and 50 days #### What does the study involve? Participants will be randomly allocated to one of five groups which will each involve different immunisation schedules of the vaccine containing DTP. Participants will have an equal chance of being allocated to each group. The timing of doses, and whether a child receives two or three doses (as both have been shown to be effective), will vary between each group. Children will then have blood tests taken to see whether they have antibodies for DTP before they receive their booster doses. What are the possible benefits and risks of participating? The benefits include the opportunity to receive vaccines for Typhoid and Varicella which are not currently included as part of the Expanded Programme on Immunisation. The risks are those associated with phlebotomy (blood-drawing), and include pain and discomfort. Where is the study run from? The Masaka Field site, managed by the MRC/UVRI and LSHTM Uganda Research Unit (Uganda) When is the study starting and how long is it expected to run for? June 2019 to June 2024 Who is funding the study? Bill and Melinda Gates Foundation (USA) Who is the main contact? - 1. Professor Andrew Pollard (scientific), andrew.pollard@paediatrics.ox.ac.uk - 2. Sarah Kelly (public), sarah.kelly@paediatrics.ox.ac.uk # Contact information #### Type(s) Scientific #### Contact name **Prof Andrew Pollard** #### **ORCID ID** http://orcid.org/0000-0001-7361-719X #### Contact details Oxford Vaccine Group Centre for Clinical Vaccinology and Tropical Medicine (CCVTM) Churchill Hospital Old Road Headington Oxford United Kingdom OX3 7LE +44 (0)1865 611400 andrew.pollard@paediatrics.ox.ac.uk #### Type(s) Public #### Contact name Ms Sarah Kelly #### Contact details Oxford Vaccine Group Churchill Hospital Centre for Vaccinology and Tropical Medicine Oxford United Kingdom OX3 7LE +44 (0)7468 353751 sarah.kelly@paediatrics.ox.ac.uk # Additional identifiers #### **EudraCT/CTIS** number Nil known #### IRAS number #### ClinicalTrials.gov number Nil known #### Secondary identifying numbers V1.3 November 2019 # Study information #### Scientific Title Optimising diphtheria, tetanus toxoids and pertussis (DTP)-containing vaccine infant immunisation schedules in Uganda #### Acronym **OPTIMMS-Uganda** #### **Study objectives** To identify an optimal immunisation schedule for infants by comparing the immunogenicity of 5 different immunisation schedules (each based on positive immunogenicity data from previous research) including the current WHO recommended 'accelerated' schedule, investigating the effect of number, spacing and timing of doses of routine infant vaccines in the different schedule using the WHO recommended EPI schedule as the reference schedule #### Ethics approval required Old ethics approval format #### Ethics approval(s) - 1. Approved 16/12/2019, Uganda Virus Research Institute (UVRI) Research Ethics Committee (Plot 51-59, Nakiwogo Rd, Entebbe, Uganda; +256 414 320 385; fayebazibwe@uvri.go.ug), ref: GC /127/19/12/754 - 2. Approved 24/07/2020, Uganda National Council for Science & Technology (UNSCT, Plot 6 Kimera Road, Ntinda, P.O. Box 6884, Kampala, Uganda; +256 414 705500; info@unsct.go.ug), ref: SS 5205 - 3. Approved 04/02/2021, National Drug Authority (Plot 19 Lumumba Avenue, P.O. Box 23096, Kampala, Uganda; +256 417 788 100/1; ndaug@nda.or.ug), ref 686/NDA/DPS/09/2020. - 4. Approved 03/03/2021, OxTREC (Research Services, University Of Oxford, University Offices, Oxford, OX1 2JD, UK; +44 (0)1865 282585; oxtrec@admin.ox.ac.uk), ref: 13-20. #### Study design Multi-site randomized 5-arm non-inferiority clinical trial #### Primary study design Interventional #### Secondary study design Randomised controlled trial #### Study setting(s) Hospital #### Study type(s) Prevention #### Participant information sheet See additional file ISRCTN60356654_PIS_English_V2.1_17Feb2020 (added 01/03/2021) #### Health condition(s) or problem(s) studied Diphtheria, tetanus toxoids and pertussis (DTP) immunity through infant immunisation schedules in Uganda #### **Interventions** Infants will be enrolled at study "hub" sites, located in busy and centrally located health facilities and clinics, in Masaka District, Uganda. Potential participants will be identified throughout a broader catchment area, through antenatal clinics (ANC), and early vaccination visits, and invited to come of one of the hub sites to enrol in the study, if interesteds. The study will be open-label for participants and clinical trial staff but blinded for laboratory staff. The study will assess the immunogenicity of the current DTP-Hib-HBV-containing vaccine administered in 5 different immunisation schedules Following informed parent/legal guardian consent, enrolled infants will be randomly allocated to one of 5 main vaccination groups, and one of four booster dose schedule. Randomisation will occur electronically via a plugin on RedCAP. The first two schedules (Groups 1 and 2) are two 'Early Pertussis' schedules and correspond to the WHO standard, and a modified, EPI schedules (two rather than 3 early doses). Group 3 will be vaccinated according to the OptImms-proposed schedule (which is also the E-CDC recommended schedule). Groups 4 and 5 correspond to the programs currently in use in the UK and Americas. Blood tests will be performed at standard time points considered necessary for evaluation of vaccine responses. The primary outcome Pertussis IgG immune response will be measured at the pre-booster dose time point, at 9 or 12 months of age. Children will receive varicella and typhoid vaccination as a benefit of participation in the study. Vaccinations will occur over a 15-month time period, with a 24-month follow-up period for all study arms. #### Intervention Type Biological/Vaccine #### Phase Not Applicable Drug/device/biological/vaccine name(s) DTwP-HBV-Hib vaccine (Serum Institute of India), Oral Polio Vaccine – Bi-valent, Injectable Polio Vaccine, Pneumococcal conjugate vaccine (Synflorix), Measles Rubella vaccine, Typhoid conjugate vaccine (Typbar-TCV®, Bharat-Biotech.), Yellow fever vaccine (Stamaril live attenuated, Sanofi Pasteur) #### Primary outcome measure Pertussis IgG immune response measured using Multiplexed Immune Assay (MIA)-5 plex at the pre-booster dose time point (aged 9 or 12 months) #### Secondary outcome measures Current secondary outcome measures as of 28/06/2024: - 1. Pertussis IgG immune response measured using MIA 4-plex at the post-prime dose time point, (aged 10, 12, 14 or 16 weeks), 1 month post-primary series (aged 18, 20, or 28 weeks), prebooster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 2. Diphtheria IgG immune response measured using MIA 5-plex using in-house reference sera calibrated against the WHO standard, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months. The MIA 5-plex uses in-house reference sera as standard, which are calibrated against the WHO standard. - 3. Tetanus IgG immune response measured using MIA 5-plex using in-house reference sera calibrated against the WHO standard, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 4. Hepatitis B virus S antigen measured using an assay currently under development at the Dutch Institute of Public Health, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 5. Polyribosylribitol phosphate (PRP) Haemophilus influenzae type b (Hib) IgG immune response measured using a multiplexed immune assay, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 6. Serotype specific anti-pneumococcal IgG measured in an MIA x-plex, in 1a, 2, 3 and 4 blood samples in all arms and booster groups . IVIG that has been calibrated against the 89-S serum is used as reference serum - 7. Polio type I-III IgG immune response measured using a 3-plex inhibition assay, at the prebooster timepoint (aged 9 or 12 months) and aged 24 months - 8. Typhoid vi-IgG will be measured using an assay currently under development at the Dutch Institute of Public Health, in blood 2 in Arm 5 at 28 weeks, in blood 3&4b in booster group 2, 3, and 4 (12 and 24 months). - 9. Serum volumes permitting YF response will be measured using plaque reduction neutralization titre (PRNT) assays, by ELISA and/or indirect fluorescent antibody test (IFA) in blood 2 in Arm 5 at 28 weeks, in blood 3&4b in booster group 2, 3, and 4 (12 and 24 months). - 10. Measles IgG antibody concentrations are measured in an MIA 4-plex at all time points up to the first measles and rubella vaccine dose, if possible given blood sample volumes - 11. Measles titre measured using plaque reduction neutralization titre (PRNT) assay, if possible given blood sample volume, at all time points up to the first measles and rubella vaccine dose - 12. Rubella IgG response measured using MIA 4-plex, if possible given blood sample volume, at all time points up to the first measles and rubella vaccine dose. As standard, the international rubella standard (RUBI-1-94) is used, which has been calibrated against the international reference serum for measles. - 13. Descriptive summary of self-reported local and systemic vaccine reactions occurring within 7 days post-vaccination collected verbally at each point of contact, using Brighton Collaboration case definitions - 14. Rota virus IgG will be measured using MIA 4-plex in all blood samples of all arms and booster groups. - 15. SARS-COV2 IgG and RSV IgG will be measured using MIA 4-plex in all blood samples of all arms and booster groups. #### Previous secondary outcome measures: - 1. Pertussis IgG immune response measured using MIA 4-plex at the post-prime dose time point, (aged 10, 12, 14 or 16 weeks), 1 month post-primary series (aged 18, 20, or 28 weeks), prebooster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 2. Diphtheria IgG immune response measured using MIA 5-plex using in-house reference sera calibrated against the WHO standard, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months. The MIA 5-plex uses in-house reference sera as standard, which are calibrated against the WHO standard. - 3. Tetanus IgG immune response measured using MIA 5-plex using in-house reference sera calibrated against the WHO standard, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 4. Hepatitis B virus S antigen measured using an assay currently under development at the Dutch Institute of Public Health, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 5. Polyribosylribitol phosphate (PRP) Haemophilus influenzae type b (Hib) IgG immune response measured using a multiplexed immune assay, at age 14 or 16 weeks, 1 month post-primary series (aged 18, 20, or 28 weeks), pre-booster timepoint (aged 9 or 12 months), post-booster timepoint (aged 10 or 13 months), and aged 24 months - 6. Serotype specific anti-pneumococcal IgG measured in an MIA x-plex, at the pre-booster timepoint (aged 9 months), post-booster timepoint (aged 10 months), and aged 24 months. IVIG that has been calibrated against the 89-S serum is used as reference serum - 7. Polio type I-III IgG immune response measured using a 3-plex inhibition assay, at the pre-booster timepoint (aged 9 or 12 months) and aged 24 months - 8. Typhoid vi-IgG will be measured using an assay currently under development at the Dutch Institute of Public Health, at age 13 and 24 months - 9. Serum volumes permitting JE response will be measured using plaque reduction neutralization titre (PRNT) assays, by ELISA and/or indirect fluorescent antibody test (IFA) at age 13 and 24 months - 10. Measles IgG antibody concentrations are measured in an MIA 4-plex at all time points up to the first measles and rubella vaccine dose, if possible given blood sample volumes - 11. Measles titre measured using plaque reduction neutralization titre (PRNT) assay, if possible given blood sample volume, at all time points up to the first measles and rubella vaccine dose 12. Rubella IgG response measured using MIA 4-plex, if possible given blood sample volume, at - all time points up to the first measles and rubella vaccine dose. As standard, the international rubella standard (RUBI-1-94) is used, which has been calibrated against the international reference serum for measles. 13. Descriptive summary of self-reported local and systemic vaccine reactions occurring within 7 days post-vaccination collected verbally at each point of contact, using Brighton Collaboration case definitions #### Overall study start date 24/06/2019 #### Completion date 30/06/2024 # **Eligibility** #### Key inclusion criteria - 1. Aged between 42 and 50 days at the time of the first visit - 2. Generally healthy as determined by a medical history and examination - 3. Resident in the greater Masaka, Uganda study area and planning to remain in the study area for the 2 years of the study #### Participant type(s) Healthy volunteer #### Age group Child #### Lower age limit 42 Days #### Upper age limit 50 Days #### Sex Both #### Target number of participants 956 #### Key exclusion criteria - 1. Born at <37 weeks gestation - 2. Birth weight <2.5 kg, or a current weight of <3 kg at 6 weeks of age, as determined by a medical professional - 3. Prior receipt of any vaccination except polio, hepatitis B, or BCG - 4. Planned administration of vaccines other than the study vaccines (with the exception of vaccines against rotavirus, hepatitis A & B, inactivated influenza and varicella, which can be administered 14 days before or after study vaccines; polio and measles/rubella vaccines as part of national campaigns; and BCG vaccines which will be administered when indicated by national programme) - 5. Parents who plan to move out of the geographical study area - 6. Concurrently participating in another clinical study, which includes blood draws or IMPs, at any time during the study period, in which the participant has been or will be exposed to an investigational or a non-investigational product (pharmaceutical product or device) - 7. Any major congenital defects, serious chronic illness, significant disease, disorder, family history or diagnosis of immunosuppressive condition, or medical treatments which, in the opinion of the Investigator, may either put the participants at risk because of participation in the study, or may influence the result of the study, or the participant's ability to participate in the study - 8. Use of any investigational or non-registered product (drug or vaccine) within 30 days preceding the vaccination, or planned use during the study period - 9. Known allergy to any vaccine components # Date of first enrolment 01/10/2021 # Date of final enrolment 31/07/2022 # Locations #### Countries of recruitment Uganda # Study participating centre MRC/UVRI and LSHTM Uganda Research Unit (Entebbe) Plot 51-59 Nakiwogo Road Entebbe Uganda # Sponsor information #### Organisation University of Oxford #### Sponsor details Oxford Tropical Research Ethics Committee Research Services Wellington Square Oxford England United Kingdom OX1 2JD +44 (0)1865 282585 oxtrec@admin.ox.ac.uk # Sponsor type #### University/education #### Website https://researchsupport.admin.ox.ac.uk/governance/ethics/committees/oxtrec #### **ROR** https://ror.org/052gg0110 # Funder(s) #### Funder type Charity #### Funder Name Bill and Melinda Gates Foundation #### Alternative Name(s) Bill & Melinda Gates Foundation, Gates Foundation, BMGF, B&MGF, GF #### **Funding Body Type** Government organisation #### **Funding Body Subtype** Trusts, charities, foundations (both public and private) #### Location United States of America # **Results and Publications** #### Publication and dissemination plan Planned publication in a high-impact peer-reviewed journal. End of study report intended to be available for the funder 30/5/2024. #### Intention to publish date 31/07/2025 #### Individual participant data (IPD) sharing plan The datasets generated during and/or analysed during the current study are not expected to be made available due to their size, but analyses will be published with summary data. #### IPD sharing plan summary Not expected to be made available #### **Study outputs** | Output type D | Details | Date created | Date added | Peer reviewed? | Patient-facing? | |---|--------------|--------------------------|--------------------------|----------------|-----------------| | Participant information sheet Ve | version V2.1 | 17/02/2020 | 01/03/2021 | No | Yes | | Participant information sheet Protocol article | version 3.0 | 24/02/2021
21/07/2023 | 11/02/2022
24/07/2023 | No
Yes | Yes
No |