

Using platelet function analysis to personalise anti-thrombotic drug therapies

Submission date	Recruitment status	<input checked="" type="checkbox"/> Prospectively registered
16/06/2025	Recruiting	<input type="checkbox"/> Protocol
Registration date	Overall study status	<input type="checkbox"/> Statistical analysis plan
16/06/2025	Ongoing	<input type="checkbox"/> Results
Last Edited	Condition category	<input type="checkbox"/> Individual participant data
16/07/2025	Circulatory System	<input checked="" type="checkbox"/> Record updated in last year

Plain English summary of protocol

Background and study aims

Platelets are tiny cells in our blood that help stop bleeding by forming clots when blood vessels are damaged. But sometimes, they form clots when they shouldn't. This can block blood flow and cause serious problems like heart attacks and strokes. Medicines that reduce clotting can help, but they also increase the risk of dangerous bleeding. Right now, doctors don't have a good way to know which patients will benefit from these medicines and which might be harmed. This study is testing a new way to measure how platelets behave, to help doctors make better decisions about treatment. The goal is to see how well this test works in people who've had a type of heart attack called a non-STEMI.

Who can participate?

Adults aged 18 or over who have been diagnosed with a non-STEMI heart attack.

What does the study involve?

Participants will have their platelet function tested three times:

- When they are admitted to hospital
- Around two months later (when they are likely taking two anti-clotting medicines)
- At 12 months (after one of the medicines has been stopped)

These tests will help researchers understand how platelets behave over time and how this relates to treatment.

What are the possible benefits and risks of participating?

Taking part may not directly benefit participants, but it could help improve treatment for future patients. The risks are low, but as with any blood test, there may be minor discomfort or bruising.

Where is the study run from?

University of Reading (UK)

When is the study starting and how long is it expected to run for?

June 2025 to August 2030.

Who is funding the study?

British Heart Foundation

Who is the main contact?

Jonathan Gibbins, j.m.gibbins@reading.ac.uk

Contact information

Type(s)

Public, Scientific, Principal investigator

Contact name

Prof Jonathan Gibbins

ORCID ID

<https://orcid.org/0000-0002-0372-5352>

Contact details

University of Reading, School of Biological Sciences, Health and Life Sciences Building
Reading
United Kingdom
RG6 6EX
+44 1183787082
j.m.gibbins@reading.ac.uk

Additional identifiers

Clinical Trials Information System (CTIS)

Nil known

Integrated Research Application System (IRAS)

357473

ClinicalTrials.gov (NCT)

Nil known

Protocol serial number

CPMS 69135

Study information

Scientific Title

PLatelet phenomics Analysis to guide patient Stratification and anti-platelet Medication In acute Coronary syndrome

Acronym

PLASMIC

Study objectives

Platelet Phenomic Analysis can guide therapeutic choices for patients with acute coronary syndrome

Ethics approval required

Ethics approval required

Ethics approval(s)

submitted 09/06/2025, West Midlands - Edgbaston Research Ethics Committee (2 Redman Place, Stratford, London, E20 1JQ, United Kingdom; +44 2071048137; edgbaston.rec@hra.nhs.uk), ref: 25/WM/0133

Study design

Single-centre longitudinal observational analysis of platelet function using Platelet Phenomic Analysis to refine its use for personalisation of anti-platelet therapy in patients diagnosed with non-STEMI myocardial infarction.

Primary study design

Observational

Study type(s)

Diagnostic, Screening

Health condition(s) or problem(s) studied

Acute coronary syndrome: non-STEMI myocardial infarction

Interventions

Platelet phenomics analysis to be performed at admission, at approximately 2 months (when likely to be on dual anti-platelet therapy) and at 12 months following removal of second anti-platelet agent

Intervention Type

Other

Primary outcome(s)

Platelet phenomics analysis to assess impact of inherent platelet function capacity on responses to single and dual anti-platelet therapies at baseline, 2 months, 12 months

Key secondary outcome(s)

Pharmacogenomic analysis to determine impact on platelet function responses (measured by Platelet Phenomic Analysis) of different anti-platelet agents at baseline, 2 months, 12 months

Completion date

31/08/2030

Eligibility

Key inclusion criteria

Diagnosis of non-STEMI myocardial infarction

Participant type(s)

Patient

Healthy volunteers allowed

No

Age group

Adult

Lower age limit

18 years

Upper age limit

100 years

Sex

All

Key exclusion criteria

Patients already taking P2Y12 antagonists, pregnancy, active or recent malignancy, and renal, liver or other haematological pathologies

Date of first enrolment

01/01/2026

Date of final enrolment

01/07/2028

Locations

Countries of recruitment

United Kingdom

England

Study participating centre

Royal Berkshire Hospital NHS Foundation Trust

University Department of Cardiology

Craven Road

Reading

United Kingdom

RG1 5AN

Sponsor information

Organisation

Funder(s)

Funder type

Charity

Funder Name

British Heart Foundation

Alternative Name(s)

the_bhf, The British Heart Foundation, BHF

Funding Body Type

Private sector organisation

Funding Body Subtype

Trusts, charities, foundations (both public and private)

Location

United Kingdom

Results and Publications

Individual participant data (IPD) sharing plan

Brief report aimed at participants will be available at the conclusion of the study.

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

j.m.gibbins@reading.ac.uk (Jonathan Gibbins)

Platelet function analysis – raw and processed using our open source and publicly available software. This will not make much sense without our prior analysis and will form the basis of our future patient stratification procedures. Thus the most helpful way to access will be via email and with our support.

Data will be available from point of publication and will be available in perpetuity via UoReading research data repository.

Likely to be helpful for other groups interest in patient stratification based on platelet function analysis using our analytical systems.

Consent was obtained.

No legal restrictions at this point, although if this forms the basis of new IP protection, this may slow down sharing. Protection of IP will be necessary to support commercialisation that will be essential for wide adoption in the longer term.

IPD sharing plan summary

Available on request

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Participant information sheet	Participant information sheet	11/11/2025	11/11/2025	No	Yes