How does training in mindfulness meditation effect the brain structure and cognition?

Submission date 23/11/2010	Recruitment status No longer recruiting	 Prospectively registered Protocol
Registration date 19/05/2011	Overall study status Completed	 Statistical analysis plan Results
Last Edited 19/05/2011	Condition category Other	 Individual participant data Record updated in last year

Plain English summary of protocol

Not provided at time of registration

Contact information

Type(s) Scientific

Contact name Dr Peter Vestergaard-Poulsen

Contact details

Center for Functionally Integrative Neuroscience Aarhus University Norrebrogade 44 Aarhus Denmark 8000

Additional identifiers

EudraCT/CTIS number

IRAS number

ClinicalTrials.gov number

Secondary identifying numbers 25931/26960

Study information

Scientific Title

A randomised controlled trial using MRI scans and cognitive testing to determine the effect of meditation on brain structure and cognition

Study objectives

We will examine whether there is a causal relationship between meditation practice and the brain anatomy as well as number of physiological and cognitive parameters.

We are testing multiple hypotheses of training novices for 6 weeks, however our main hypotheses are:

1. Signifigant pre-frontal (IFG) and insular cortex density increase for meditation group (MG) measured by MRI.

2. Significant decrease in default mode network connectivity, correlated with increased insular density and improved self-regulation (stop accuracy) and error awareness

3. Signifigantly increased emotional stroop effect, with greater insula response to emotional distractors yet increased stroop accuracy

Ethics approval required

Old ethics approval format

Ethics approval(s)

The Local Ethics Committee on clinical research approved on the 23rd of August 2010 (ref: 25931 /26960)

Study design

Single centre randomised wait list controlled parallel group trial

Primary study design

Interventional

Secondary study design

Randomised controlled trial

Study setting(s)

Hospital

Study type(s) Treatment

Participant information sheet

Not available in web format, please use contact details below to request a patient information sheet

Health condition(s) or problem(s) studied

Meditation practice

Interventions

 We studied normal subjects with no prior meditation, or related training undergoing intensive meditation training based on a set of breathing exercises and mindfulness techniques
 We included 60 university students of which 30 randomly chosen subjects will practice daily 20 minutes for 6 weeks

3. The other 30 subjects (will be the waitlist for meditation training) will act as a control group to

check for i.e. training effects in the cognitive tests by being a reading group with same frequency of training and focusing on the narrative content only

Intervention Type

Other

Phase Not Applicable

Primary outcome measure

Pre-frontal (IFG) and insular cortex density measured by MRI at baseline and 6 weeks

Secondary outcome measures

- Measured at baseline and 6 weeks:
- 1. Default-mode network connectivity
- 2. Stop accuracy and error awareness
- 3. Emotional stroop

Overall study start date

03/12/2010

Completion date

01/03/2011

Eligibility

Key inclusion criteria

- 1. Either sex, aged 18-40 years, ethnic Danes
- 2. Right handed

3. Health subjects with no history of neurological disorders, psychological and/or psychiatric, cardiovascular or respiratory diseases, brain injury, cancer, addiction to drugs/alcohol, severe impediment to limb movement, hearing and vision

4. Normal MRI brain scan

Participant type(s) Patient

Age group Adult

Lower age limit 18 Years

Upper age limit 40 Years

Sex

Both

Target number of participants

Key exclusion criteria

1. Frequent diving, high altitude climbing or flying or other activities related to the respiratory system

2. Recent biofeedback training, hypnosis and acupuncture (due to the possible modulating of the vagal output)

Date of first enrolment 03/12/2010

Date of final enrolment 01/03/2011

Locations

Countries of recruitment Denmark

Study participating centre Center for Functionally Integrative Neuroscience Aarhus Denmark 8000

Sponsor information

Organisation Aarhus University (Denmark)

Sponsor details Center for Functionally Integrative Neuroscience Norrebrogade 44 Aarhus Denmark 8000

Sponsor type University/education

ROR https://ror.org/01aj84f44

60

Funder(s)

Funder type Government

Funder Name Ministry of Health (Denmark)

Results and Publications

Publication and dissemination plan Not provided at time of registration

Intention to publish date

Individual participant data (IPD) sharing plan

IPD sharing plan summary Not provided at time of registration