Proof of concept study for the use of edgebased potassium sweat sensors | Submission date | Recruitment status No longer recruiting | Prospectively registered | | | |-------------------|---|--|--|--| | 07/11/2024 | | Protocol | | | | Registration date | Overall study status Completed Condition category | [X] Statistical analysis plan | | | | 20/11/2024 | | Results | | | | Last Edited | | Individual participant data | | | | 08/07/2025 | Other | [X] Record updated in last year | | | ## Plain English summary of protocol Background and study aims Our study focuses on enhancing the performance of soldiers by using a computer called UltraLYNX[™] to monitor human performance. Potassium, a salt in the body, can indicate how stressed your body is. We aim to show that a potassium sensor can accurately detect potassium levels in sweat compared to blood. We will also test if caffeine affects these measurements at rest and during exercise. Additionally, we want to see if data from the potassium sensor and a heart rate monitor can be combined to create a red, amber, or green (RAG) signal to indicate how hard your body is working. #### Who can participate? Participants must be healthy adults who do not have any conditions or habits that could interfere with the study, such as intolerance to caffeine, smoking, recent drug use, or certain medical conditions. #### What does the study involve? Participants will visit the lab, where they will take either a caffeine pill or a placebo. They will undergo various tests, including measuring electrodermal activity, cognitive performance tests, and a treadmill exercise protocol. During the exercise, we will monitor heart rate, gait pattern, and other physiological responses. What are the possible benefits and risks of participating? Participants may benefit from learning more about their physical and cognitive performance. However, there are risks such as discomfort from blood sampling, potential side effects from caffeine, and physical exertion during the treadmill test. Where is the study run from? Defence Science and Technology Laboratory (UK) When is the study starting and how long is it expected to run for? July 2024 to July 2025 Who is funding the study? Defence and Security Accelerator (UK) Who is the main contact? Dr Christopher Gaffney, c.gaffney@lancaster.ac.uk # Contact information ## Type(s) Public, Scientific, Principal Investigator #### Contact name Dr Christopher Gaffney #### **ORCID ID** https://orcid.org/0000-0001-7990-2792 #### Contact details Health Innovation One, Lancaster University Lancaster United Kingdom LA1 4YW +44 (0) 1524 593602 c.gaffney@lancaster.ac.uk # Additional identifiers # **EudraCT/CTIS** number Nil known #### IRAS number # ClinicalTrials.gov number Nil known # Secondary identifying numbers 2310/MODREC/24 # Study information #### Scientific Title Proof of concept study for the use of edge-based potassium sweat sensors integrated with the $UltraLYNX^m$ power and communication platform # Study objectives A novel potassium sensor can reliably detect potassium levels in sweat when compared to blood. # Ethics approval required Ethics approval required #### Ethics approval(s) Approved 02/07/2024, Ministry of Defence Research Ethics Committee (DSTL Portsdown West, Salisbury, PO17 6AD, United Kingdom; +44 3001535372; DST-MODRECTeam@mod.gov.uk), ref: 2310/MODREC/24 #### Study design Single-centre interventional double-blind placebo-controlled randomized crossover trial #### Primary study design Interventional ## Secondary study design Randomised cross over trial #### Study setting(s) Laboratory #### Study type(s) Other #### Participant information sheet Not available in web format, please use contact details to request a participant information sheet #### Health condition(s) or problem(s) studied Healthy active population #### Interventions A single centre interventional double-blind placebo-controlled randomised crossover trial is being used to investigate a novel potassium sensor and the effect of caffeine on cognitive and physical performance #### Cannulation, electrodermal activity and cognitive performance tests Upon entering the lab, subjects will be cannulated using a standard antecubital cannula. The study visits will involve the ingestion of either a 200mg caffeine pill or a placebo pill (double-blinded, randomised). After administration of either the placebo or caffeine pill, participants will wait for 45 minutes whilst undergoing monitoring to allow the caffeine to become bioavailable. Participants will have electrodermal activity measured using electrodes on the hand or wrist. This involves connecting two electrodes to the non-dominant hand (typically the index and middle finger) or the wrist. Participants will remain seated and still whilst measurements are taken. Participants will then undergo a cognitive performance test battery on a laptop comprising of tests to measure attention, memory, and reaction time skills. We will use NIH toolbox cognitive tests. Participants will complete: (1) Flanker Inhibitory Control and Attention Test; (2)List Sorting Working Memory Test and (3) Oral Symbol Digit Test (3 minutes). Stimuli are presented digitally (on the laptop) but oral responses are given, and the experimenter records the responses. # Preparation for treadmill testing Once complete, participants will don a Hans-Rudolph mouthpiece for breath-by-breath analysis and the straps around the head will be secured by a researcher, Polar heart rate chest strap, a weighted vest (20lb/9.07kg for every participant) and will be connected to an online gas-analysis system. The side of the treadmill will be fitted with the infra-red OptoJump system to monitor changes in gait pattern between trials. #### Marching protocol Participants will then move on to complete a simulated march and running protocol on the treadmill, designed to mimic the load carriage of fast marches in the British Army at the time, and an offensive/defensive fire and manoeuvre-based task. The protocol comprises of 20 minutes walking at 5.1km/h then 40 mins walking at 6.5 km/h at a 1% gradient all whilst carrying a 9.07kg (20lb) load within a weighted vest. At 60 mins and still at a 1% gradient, participants then walk for 1 min at 2.5 km/h before the gradient is increased to 3% and participants complete 8 x 9s shuttle runs at 11 km/h with inter-shuttle rest periods of 11s at 2.5km/h. Sampling and measurements during the marching protocol Ratings of perceived exertion will be taken at 10-minute intervals throughout the marching protocols and at the end of the shuttle runs using the Borg 6-20 scale. Similarly, glucose and lactate will be measured at 10-minute intervals throughout using a finger prick capillary blood sample and analysis on a Biosen EKF point of care glucose/lactate analyser. Finally, we will assess muscle performance through the measurement of peak isokinetic torque using an isokinetic dynamometer, both before and after the 62-minute treadmill protocol. Whole blood will be sampled at the end of each stage from a peripheral venous cannula. Gas exchange including O2, CO2 and minute ventilation (VE) will be measured throughout the marching protocol using a Cortex Metalyzer breath-by-breath gas analysis system. #### Intervention Type Supplement #### Primary outcome measure Potassium Levels - measured via novel potassium sensor at rest and during exercise via sweat and from blood #### Secondary outcome measures Effect of caffeine on cognitive and physical performance: - 1. Electrodermal activity is measured using electrodes on the hand or wrist at 45 minutes postadministration - 2. Attention is measured using the Flanker Inhibitory Control and Attention Test at 45 minutes post-administration - 3. Working memory is measured using the List Sorting Working Memory Test at 45 minutes postadministration - 4. Reaction time is measured using the Oral Symbol Digit Test at 45 minutes post-administration - 5. Breath-by-breath analysis is measured using a Hans-Rudolph mouthpiece and online gasanalysis system during treadmill testing - 6. Heart rate is measured using a Polar heart rate chest strap during treadmill testing - 7. Gait pattern is measured using the infra-red OptoJump system during treadmill testing - 8. Ratings of perceived exertion are measured using the Borg 6-20 scale at 10-minute intervals throughout the marching protocol and at the end of the shuttle runs - 9. Glucose is measured using a finger prick capillary blood sample and Biosen EKF point of care glucose/lactate analyser at 10-minute intervals throughout the marching protocol - 10. Lactate is measured using a finger prick capillary blood sample and Biosen EKF point of care glucose/lactate analyser at 10-minute intervals throughout the marching protocol - 11. Muscle performance is measured using an isokinetic dynamometer before and after the 62-minute treadmill protocol - 12. Gas exchange (O2, CO2, minute ventilation) is measured using a Cortex Metalyzer breath-by-breath gas analysis system throughout the marching protocol # Overall study start date 02/07/2024 ## Completion date 01/07/2025 # **Eligibility** ## Key inclusion criteria - 1. Male or female - 2. Aged 18-35 years - 3. Pass UK military physical tests #### Participant type(s) Healthy volunteer #### Age group Adult #### Lower age limit 18 Years #### Upper age limit 35 Years #### Sex Both # Target number of participants 20 #### Total final enrolment 20 #### Key exclusion criteria - 1. Any intolerance or avoidance of caffeine - 2. Any prescribed medication - 3. Smokers (smoking defined as more than 100 cigarettes throughout lifetime) - 4. Vaping defined as any use in last 7 days - 5. Liquorice consumption within the last 7 days - 6. Recreational drug use in the last month, including, but not limited to, cannabis and cocaine - 7. Any medical condition that would prevent entry into army, navy or air force - 8. Phobia to needles - 9. Allergy or insensitivity to materials used in the study (e.g., adhesive) - 10. Recent musculoskeletal injury (within the last 3 months) - 11. Non-English speakers - 12. Pregnancy - 13. Atrial fibrillation - 14. Any findings that the Clinical research fellow believes affect the integrity of study data or the safety to conduct tests #### Date of first enrolment 18/11/2024 #### Date of final enrolment 25/06/2025 # Locations #### Countries of recruitment England **United Kingdom** # Study participating centre Lancaster university Bailrigg Lancaster United Kingdom LA1 4YW # Sponsor information #### Organisation Defence Science and Technology Laboratory #### Sponsor details Porton Down Salisbury England United Kingdom SP4 0JQ +44 1980 950000 centralenq@dstl.gov.uk #### Sponsor type Government #### Website https://www.gov.uk/government/organisations/defence-science-and-technology-laboratory #### **ROR** https://ror.org/04jswqb94 # Funder(s) #### Funder type Government #### **Funder Name** Defence and Security Accelerator #### Alternative Name(s) **DASA** #### **Funding Body Type** Government organisation #### **Funding Body Subtype** National government #### Location **United Kingdom** # **Results and Publications** ## Publication and dissemination plan Planned publication in a peer-reviewed journal # Intention to publish date 01/03/2026 # Individual participant data (IPD) sharing plan The datasets generated during and/or analysed during the current study will be available upon request from Dr Christopher Gaffney (c.gaffney@lancsaster.ac.uk). # IPD sharing plan summary Not expected to be made available # **Study outputs** | Output type | Details | Date created | Date added | Peer reviewed? | Patient-facing? | |-------------------------------|---------|--------------|------------|----------------|-----------------| | Participant information sheet | | | 14/11/2024 | No | Yes | | Statistical Analysis Plan | | | 14/11/2024 | No | No |