Brain stimulation to improve movement in children with cerebral palsy

Submission date 16/03/2020	Recruitment status No longer recruiting	[X] Prospectively registered [_] Protocol
Registration date 22/12/2020	Overall study status Completed	 Statistical analysis plan Results
Last Edited 12/07/2023	Condition category Nervous System Diseases	Individual participant dataRecord updated in last year

Plain English summary of protocol

Background and study aims

Cerebral palsy (CP) is the most common cause of childhood physical disability. Many children with CP experience lifelong difficulties with their movement, affecting their daily activities. Transcranial direct current stimulation (TDCS) is a safe, painless and non-invasive type of brain stimulation which may increase the ability of the brain to adapt, and could be effective at improving movement and function when combined with therapy. However, no one has combined TDCS with therapy involving both the arm and leg, even though many people with CP experience difficulties with both of these limbs. This study aims to assess whether 10 sessions of TDCS over 2 weeks could be effective at improving movement and function and relevant. Specifically the researchers aim to assess how large the potential improvement in function is in order to plan future large-scale clinical trials, and to use brain scanning to explore who is most likely to benefit from the TDCS.

Who can participate?

Young people aged 10-16 years with CP affecting the movement of their arm and/or leg

What does the study involve?

Assessments will be at the start of the study, 1 week following the intervention, 6 weeks and 3 months later. These include assessments to measure participants ability to move their arm and leg and questionnaires about quality of life. Participants who are able and willing will also undergo one magnetic resonance imaging (MRI) brain scan at the start of the study. The intervention consists of 10 sessions over 2 weeks, each lasting about 2 hours. Each session will involve 20 minutes of TDCS, alongside 90 minutes of physical therapy exercises for the arm and leg, in groups of up to five. This includes functional and magic tasks in a fun and engaging manner. Half the participants will receive real TDCS, the other half will receive a sham/placebo where the brain is not actually stimulated. All participants will receive physical therapy training.

What are the possible benefits and risks of participating?

Participants may experience an improvement in their movement. Possible side effects of the TDCS include an itching/tingling/prickling sensation on the scalp and some short-term redness on the skin. This is normal and typically resolves within a few minutes. Participants may also

experience a mild headache after the stimulation which should go away on its own or with overthe-counter medications such as paracetamol. Possible side effects of physical therapy training include sore or tired muscles for people who do not normally do much activity. This is normal and will go away on its own. It is a sign that they are been working their muscles.

Where is the study run from?

The study is run by the Centre for Movement, Occupational and Rehabilitation Sciences, Department of Sport & Health Sciences, Oxford Brookes University, together with the Wellcome Centre for Integrative Neuroimaging, University of Oxford and the Department of Clinical Sciences, Brunel University London (UK)

When is the study starting and how long is it expected to run for? September 2018 to December 2023

Who is funding the study? 1. Action Medical Research UK 2. Chartered Society for Physiotherapy (UK)

Who is the main contact? Foteini Mavrommati stimcp@brookes.ac.uk

Contact information

Type(s) Scientific

Contact name Miss Foteini Mavrommati

Contact details Oxford Brookes University Gipsy Lane Headington Oxford United Kingdom OX3 0BP +44 (0)1865488684 Foteini.mavrommati@brookes.ac.uk

Additional identifiers

EudraCT/CTIS number Nil known

IRAS number 272945

ClinicalTrials.gov number Nil known

Secondary identifying numbers

CPMS 44942, IRAS 272945

Study information

Scientific Title

Transcranial direct current stimulation to improve motor function in children with cerebral palsy: a pilot study

Acronym

StimCP

Study objectives

 Improvements in motor function will be greater for the active transcranial direct current stimulation (TDCS) group in comparison with sham
 Baseline measures of corticospinal tract integrity will have a tendency to correlate with change in motor function

Ethics approval required

Old ethics approval format

Ethics approval(s)

Approved 22/04/2020, West Midlands – Edgbaston REC (3rd Floor Barlow House, Minshull Street, Manchester M1 3DZ, UK; +44 (0)207 104 8019, +44 (0)207 104 8089; edgbaston.rec@hra. nhs.uk), REC ref: 20/WM/0046

Study design

Randomized; Interventional; Design type: Treatment, Imaging, Physical, Rehabilitation

Primary study design

Interventional

Secondary study design

Randomised controlled trial

Study setting(s) Other

Study type(s) Treatment

Participant information sheet

Not available in web format, please use the contact details to request a patient information sheet

Health condition(s) or problem(s) studied Cerebral palsy

Interventions

Setting: Testing will take place in either Oxford Brookes University, University of Oxford, Brunel University (or approved research site), London or at the child's school.

Recruitment: Considering a prevalence of 0.2% of young people with CP (~250 in the stated age range in Oxfordshire Community Paediatric Physiotherapy Team caseload in schools), assuming a recruitment period of 16-18 months, and planned recruitment through paediatric clinics and the physiotherapy team, the researchers are confident 30 participants can be recruited. They will primarily recruit through NHS clinics at Oxford University Hospital (OUH), Oxford and The Royal Free (London), community therapy teams and through schools. Clinical staff, the Community Physiotherapy Team and teachers will distribute the PIS to the potential participants and their parents/carers who may be eligible and interested in taking part in the study. They will also advertise through posters, social media and CP support groups/websites. The direct care team at OUH NHSFT (research site) will identify potential participants and pass information on to them (leaflet/PIS). Potential participants will then be asked by the direct care team to give verbal consent to be contacted by Oxford Brookes University (OBU) and University of Oxford researchers. The researchers will then contact the participants to go through the details of the study with them. It will be made clear to them that agreeing to have their contact details passed to the researchers does not oblige them to agree to take part. If they do not wish to have their contact details passed to the researchers then they may contact the researchers directly using the contact information provided on the PIS/leaflet. At the PIC sites (Oxford Health NHSFT, Roval Free London NHSFT) the direct care team will identify potential participants and pass information on to them (leaflet/PIS). Potential participants will then contact the researchers directly if they are interested in participating or have any questions.

If interested in participating in the study, the participants will be required to visit either the OBU laboratory (Oxford) or Brunel University (London) for a baseline assessment initially. Travel and time cost will be reimbursed. They will also be made aware that the study is entirely voluntary and they can opt out at any time.

Randomisation: Participants will be randomly allocated to receive active or placebo/sham TDCS, using an online minimisation programme (rando.la). The randomisation software minimises between-group differences in age and baseline function (Jebsen Taylor Test / Timed Up and Go). The participants, physiotherapist and outcome assessor will be blind to group allocation.

Measures:

Baseline assessment: age, medication and type of CP. Upper and lower limb functional assessments include:

- 1. The Jebson Taylor hand test
- 2. Timed Up and Go
- 3. Modified Ashworth spasticity scale
- 4. Gait Outcomes Assessment List (GOAL)
- 5. Assisting hand assessment (AHA)
- 6. Woods and Teuber scale for mirror movements
- 7. Children's hand use experience questionnaire (CHEQ)
- 8. Functional mobility scale (FMC)
- 9. Functional assessment questionnaire (FAQ)

This will be done by the research team. Additionally, spontaneous arm use will be assessed by asking participants to wear a wrist-worn, waterproof activity monitor on one or both wrists for 1 week (optional assessment). Baseline (only) measures of brain structure and function will be collected using Magnetic Resonance Imaging (optional assessment) by the researchers at the Wellcome Centre for Integrative Neuroimaging, University of Oxford.

Outcome assessments: Following the intervention, functional assessments (as above) will be repeated at 1 week, 6 weeks at 3 months.

Intervention:

Participants will attend 10 sessions over 2 weeks, lasting approximately 2 hours each.

Training: In each session, all participants will receive 90-minutes of physical therapy in groups of five. This will include functional upper and lower limb tasks incorporating principles of the Hand Arm Bimanual Intensive Therapy (HABIT), the upper limb intensive (Magic) camp programme and the HABIT Including Lower Extremities (HABIT-ILE). Individualised prescription/progression for both upper and lower limbs will be ensured, and activities incorporated in a fun and engaging manner.

Brain stimulation: Anodal tDCS (1 mA) will be delivered for the first 20 minutes of each training session (alongside the training). The anode electrode will be placed over the primary motor cortex on the hemisphere opposite to the more-affected upper/lower limb, using the EEG 10-20 system for localisation, as close to the midline as possible and the cathode electrode on the opposite forehead. Sham stimulation will be delivered in a standard manner; ramped up over 30 s then turned off. This sham protocol is effective for establishing the initial tingling/itching sensations induced by TDCS which then fade.

Fidelity, feasibility and acceptability of the intervention: To address the ability to recruit to the trial, the researchers will record the number of participants recruited relative to the number identified/screened, and reasons why potential participants did not enrol in the trial. To address adherence, they will record the number of sessions attended, and any reasons for non-attendance or study withdrawal if known. They will also evaluate session content, enjoyment, assessment duration and effects on sleep/fatigue (Process evaluation form: parent and child).

Any adverse effects identified will be recorded as related/unrelated and reported to the steering group.

Intervention Type

Procedure/Surgery

Primary outcome measure

1. Hand function measured as performance time for the Jebsen Taylor hand test at baseline and 1 week post-intervention

2. Performance time for the instrumented Timed Up and Go test at baseline and 1 week postintervention

Secondary outcome measures

1. Hand function measured using the Jebsen Taylor hand test (time, in seconds) at baseline, 6 weeks post-intervention and 3 months post-intervention

2. Lower limb function measured using the Timed Up and Go (time, in seconds) at baseline, 6 weeks post-intervention and 3 months post-intervention

3. Bimanual hand use measured using the Assisting Hand Assessment at baseline, 1 week, 6 weeks and 3 months post-intervention

4. Spasticity measured using the Modified Ashworth Scale at baseline and 1 week postintervention

5. Mirror movements measured using the Woods and Teuber scale at baseline and 1 week postintervention 6. Performance in activities of daily living assessed using the Gait outcomes assessment list at baseline, 1 week, 6 weeks and 3 months post-intervention

7. Hand use measured using the Children's hand use experience questionnaire at baseline, 1 week, 6 weeks and 3 months post-intervention

Other measures:

Corticospinal tract integrity assessed using a diffusion-weighted MRI scan at baseline, to test for correlations with change in functional measures

Overall study start date

24/09/2018

Completion date

31/12/2023

Eligibility

Key inclusion criteria

1. Diagnosis of cerebral palsy

2. Ages 10-16

3. Gross motor function classification score I-III

4. Manual ability classification score I-III

5. Upper and/or lower limb impairment

Participant type(s) Patient

Age group Child

Lower age limit 10 Years

Upper age limit 16 Years

Sex Both

Target number of participants

Planned Sample Size: 30; UK Sample Size: 30

Key exclusion criteria

1. Contraindications to TDCS (e.g. pacemakers, metallic implants in the head or neck, pregnancy, seizures within the past 2 years)

2. Inability to understand instructions and actively participate in the motor training

Additional exclusion criteria apply for the optional MRI substudy, such as the presence of non MR-compatible metallic implants. Participants who are excluded from MRI will still be able to undergo all other aspects of the trial.

Date of first enrolment 01/01/2021

Date of final enrolment 31/03/2023

Locations

Countries of recruitment England

United Kingdom

Study participating centre

University of Oxford Wellcome Centre for Integrative Neuroimaging John Radcliffe Hospital Oxford United Kingdom OX3 9DU

Study participating centre Oxford Brookes University Centre for Movement, Occupational and Rehabilitation Sciences (MOReS) Gipsy Lane Campus Oxford United Kingdom OX3 0BP

Study participating centre Brunel University London

Department of Clinical Department of Clinical Sciences Uxbridge United Kingdom UB8 3PH

Study participating centre

John Radcliffe Hospital Oxford University Hospitals NHS Foundation Trust Headley Way Headington Oxford United Kingdom OX3 9DU

Sponsor information

Organisation Oxford Brookes University

Sponsor details

c/o Kellie Tune Gipsy Lane Oxford England United Kingdom OX3 0BP +44 (0)1865483293 frec@brookes.ac.uk

Sponsor type University/education

Website https://www.brookes.ac.uk/

ROR https://ror.org/04v2twj65

Funder(s)

Funder type Charity

Funder Name Action Medical Research; Grant Codes: GN2813

Alternative Name(s) actionmedres, action medical research for children, AMR

Funding Body Type Private sector organisation

Funding Body Subtype Trusts, charities, foundations (both public and private) **Location** United Kingdom

Funder Name Chartered Society for Physiotherapy

Results and Publications

Publication and dissemination plan

1. Copies of the protocol are available upon reasonable request to the PI (Prof. Helen Dawes)

2. Planned publication in a peer-reviewed journal in 2023

3. The researchers will also disseminate lay summaries through CP support groups and online through their website

Intention to publish date

28/02/2024

Individual participant data (IPD) sharing plan

The datasets generated during the study will be stored in a non-publicly available repository, RADAR. This will include de-identified assessment data. Data will be available following publication of the results, for a period of 20 years. Data will be shared for research purposes, following reasonable request. Consent is obtained from participants for this purpose.

IPD sharing plan summary

Stored in repository

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
HRA research summary			28/06/2023	No	No