Comparison of heart workload during exercise after a Ross procedure and a mechanical valve replacement

Submission date	Recruitment status No longer recruiting	Prospectively registered		
27/05/2021		Protocol		
Registration date	Overall study status	Statistical analysis plan		
07/07/2021	Completed	Results		
Last Edited	Condition category	Individual participant data		
08/07/2021	Circulatory System	Record updated in last year		

Plain English summary of protocol

Background and study aims

An aortic valve replacement is a type of open heart surgery used to treat problems with the heart's aortic valve. The aortic valve controls the flow of blood out from the heart to the rest of the body. An aortic valve replacement involves removing a faulty or damaged valve and replacing it with a new valve made from synthetic materials or animal tissue.

The choice of the better substitute for aortic valve replacement (AVR) in young adults (age <60 years) remains challenging. In this population, mechanical valve or Ross procedure are the most common options.

Our hypothesis is that the workload of the left ventricle of the heart after an AVR may be lower after a Ross procedure when compared to a mechanical prosthesis. In this observational study, we aim to compare the left ventricular function and workload at rest and during exercise between patients who underwent AVR with a mechanical prosthesis or a Ross procedure. A group of healthy volunteers will serve as a control group.

Who can participate?

All adults (between 18 and 64 years old) who underwent an AVR with a mechanical prosthesis or a Ross procedure between 2008 and 2016 at the Montreal Heart Institute could be included in absence of exclusion criteria.

What does the study involve?

This is an observational, non-interventional study.

The study protocol involves 3 visits to the Montreal Heart Institute. The first visit consists of a clinical assessment, an explanation of the study protocol, and a questionnaire about physical activities. The second visit is dedicated to stress tests and echocardiography at rest and during exercise. The participant will have to cycle on an ergocycle during the test. On the third visit, the participant will undergo a stress cardiac magnetic resonance imaging study.

What are the possible benefits and risks of participating?

During the stress test or during exercise, the participant can have symptoms such as chest pain,

dyspnea, palpitations. The risk of serious events such as ventricular arrhythmias during a stress test is very low. During the study, a previously unknown abnormal condition could be detected. In such circumstances, the participant will be referred immediately to his most responsible physician for further investigations.

Where is the study run from? The study will be run at the Montreal Heart Institute, Montréal, Canada.

When the study starting and how long is it expected to run for? January 2016 to March 2019

Who is the funding of the study? Department of Cardiac Surgery of the Montreal Heart Institute.

Who is the main contact?

Dr. Pierre-Emmanuel Noly, noly, pierreemmanuel@gmail.com

Contact information

Type(s)

Scientific

Contact name

Dr Pierre-Emmanuel Noly

ORCID ID

http://orcid.org/0000-0001-6600-1258

Contact details

Montreal Heart Institute
Department of cardiac surgery
5000 rue Belanger
Montreal
Canada
H1T1C8
+1 5143763330
pierre-emmanuel.noly@icm-mhi.org

Type(s)

Scientific

Contact name

Dr Ismail El-Hamamsy

Contact details

The Mount Sinai Hospital 1 Gustave L. Levy Place New York United States of America

Additional identifiers

EudraCT/CTIS number

Nil known

IRAS number

ClinicalTrials.gov number

Nil known

Secondary identifying numbers

RACE-2015-1865

Study information

Scientific Title

Ross Assessment and Cardiac workload during Exercise trial

Acronym

RACE trial

Study objectives

Left ventricular workload during exercise might be lower after aortic valve replacement with a pulmonary autograft (Ross procedure) compared to a mechanical prosthesis.

Ethics approval required

Old ethics approval format

Ethics approval(s)

Approved 21/07/2015, Montreal Heart Institute Research Ethics Committee, (5000, rue Bélanger, Montréal Québec, H1T 1C8 I, Canada; +1 514 376-3330; no email provided), ref: FWA00003235

Study design

Single-center observational case-control matched study

Primary study design

Observational

Secondary study design

Case-control study

Study setting(s)

Hospital

Study type(s)

Participant information sheet

See additional files (in French)

Health condition(s) or problem(s) studied

Effect of exercise on the heart in patients who underwent a surgical aortic valve replacement with either a mechanical prosthesis or a Ross procedure

Interventions

For patient selection, 2 cohorts of patients who underwent aortic valve replacement with either a Ross procedure or a mechanical prosthesis were matched according to age, sexe, aortic valve disease, and date of surgery. All the participants (healthy volunteers, Ross group, mechanical AVR group) underwent subsequently an echocardiography at rest and during a stress test (VO2 max) and a cardiac magnetic resonance imaging during exercise. After study inclusion, every participant had 2 appointments, one for echocardiography and stress test ans another for MRI.

1. Echocardiography at rest and during a stress test:

Rest echocardiograms were performed with participants in a semi-supine position. Similarly, exercise echocardiograms were carried out in a semi-supine position using an ergocycle. Maximal cardiopulmonary exercise tests were performed on a semi-supine cycle ergometer. Starting initially at 20W, the workload was increased every 2 minutes in successive stages of 20W until the maximal effort was reached or at a maximum workload of 240W. Participants were asked to maintain a steady pedaling speed of 60 RPM. Peak effort was followed by a 5-minutes recuperation period. Gas exchange parameters were continuously measured at rest, during exercise, and during recovery.

The duration of the test was 1 hour.

2. Cardiac Magnetic Resonance Imaging at rest and during exercise with MRI-compatible ergocycle.

All the participants underwent a CMRI at rest and during exercise. The same stress test protocol was used (an increase of 20W every 2 minutes). The duration of the test was 2.5 hours.

Intervention Type

Behavioural

Primary outcome measure

Left ventricular workload estimated by the valvulo-arterial impedance (Zva) measured at rest and during exercise.

(The valvulo-arterial impedance equals the sum of the systolic blood pressure (sBP) and the mean aortic valve gradient divided by the stroke volume index: Zva= [sBP + mean AV gradient] / Stroke volume index. All the 3 parameters are measured at the same time during echocardiography and CMRI.)

Secondary outcome measures

- 1. Energy Loss Index (ELI) calculated as [(AVAxAa)/(Aa-AVA)]/BSA at rest and during exercise
- 2. Aortic valve area (AVA) measured by transthoracic echocardiogram (TTE) and MRI at rest and during exercise
- 3. Ascending aorta crossectional area (Aa) measured by TTE and MRI at rest and during exercise
- 4. Left ventricular stroke work (LVSW) calculated as (MAP + mean AV gradient) x Stroke volume \times 0.0136

at rest and during exercise

- 5. Aortic valve gradients measured by TTE and MRI at rest and during exercise
- 6. LV diameters and volumes measured by TTE and MRI at rest and during exercise
- 7. LV ejection fraction measured by TTE and MRI at rest and during exercise
- 8. MAP, systolic arterial pressure, diastolic arterial pressure, heart rate at rest and during exercise

Overall study start date

01/01/2016

Completion date

30/03/2019

Eligibility

Key inclusion criteria

All adults between 18 and 64 years old who underwent AVR with mechanical prosthesis or with Ross procedure at our institution between 2007 and 2016.

Participant type(s)

Patient

Age group

Adult

Lower age limit

18 Years

Sex

Both

Target number of participants

50

Total final enrolment

50

Key exclusion criteria

- 1. Uncontrolled hypertension at rest (>150/90 mmHg)
- 2. LVEF < 50%
- 3. Contra-indication to exercise
- 4. Cardiac surgery within the last 3 months
- 5. Pregnancy
- 6. Severe pulmonary hypertension (systolic pulmonary arterial pressure > 50 mmHg)
- 7. Atrial fibrillation
- 8. Cardiovascular complications (stroke, transient ischemic attack, myocardial infarction, pericardial effusion, heart failure, malignant arrhythmias) within the last 3 months
- 9. Patients with a permanent pacemaker

- 10. More than moderate mitral insufficiency
- 11. Contraindication to MRI
- 12. Impossibility to perform a stress test on an ergocycle (limiting physical capacities)

Date of first enrolment

01/03/2016

Date of final enrolment

29/03/2019

Locations

Countries of recruitment

Canada

Study participating centre Montreal Heart Institute

5000 rue Belanger Est Montreal

Canada

H1T1C8

Sponsor information

Organisation

Montreal Heart Institute

Sponsor details

Department of cardiac surgery 5000 rue Belanger Montreal Canada H1T1C8 +1 5143763330 constance.bossy@icm-mhi.org

Sponsor type

Research organisation

Website

http://www.icm-mhi.org/en/index.html

ROR

https://ror.org/03vs03g62

Funder(s)

Funder type

Hospital/treatment centre

Funder Name

Institut de Cardiologie de Montréal

Alternative Name(s)

Montreal Heart Institute, MHI, ICM

Funding Body Type

Private sector organisation

Funding Body Subtype

Research institutes and centers

Location

Canada

Results and Publications

Publication and dissemination plan

Planned publication in a high-impact peer-reviewed journal (JAMA, JACC).

Intention to publish date

01/09/2021

Individual participant data (IPD) sharing plan

All data generated or analysed during this study will be included in the subsequent results publication. All the data are acquired and stored (paper and numerical) at the Montreal Heart Institute for a duration of 10 years as required by our local IRB. If the datasets are required during the processes of publication, we will provide the data after anonymization.

IPD sharing plan summary

Other

Study outputs

Output type	Details	Date created	Date added	Peer reviewed?	Patient-facing?
Participant information sheet	version v2		08/07/2021	No	Yes