ISRCTN ISRCTN47552076
DOI https://doi.org/10.1186/ISRCTN47552076
Secondary identifying numbers N/A
Submission date
01/04/2016
Registration date
21/04/2016
Last edited
17/07/2019
Recruitment status
No longer recruiting
Overall study status
Completed
Condition category
Surgery
Prospectively registered
Protocol
Statistical analysis plan
Results
Individual participant data

Plain English summary of protocol

Background and study aims
In recent years surgical training has had to undergo big changes. Introduction of the European working times directive has limited the amount of training time for surgeons and the introduction of complex new surgical techniques means that surgeons need to develop skills in a far broader range of procedures. Alongside this, the ever increasing financial pressures on healthcare systems all around means that there is less and less money available for training new surgeons. As a result of this, surgical trainers have needed to develop new ways of teaching, and a very promising new technique is cognitive training, also known as mental rehearsal. Mental rehearsal or cognitive training describes the act of rehearsing a sequence of motions or tasks in one’s mind without actually making any physical movements. A major benefit of this will be that surgeons can then train for operations outside of the operating room. Not only is this a lot cheaper but it also means that a lot of training can be performed without putting patients at risk. Cognitive training has already been shown to work well in sports science and the airline industry. For example one experiment showed that if tennis players just imagined playing a front hand shot, their actual performance of a forehand shot at a subsequent test would improve. However cognitive training has only undergone very limited testing in surgery and has never before been tested in robotic surgery. The aim of this study is to test whether cognitive training is helpful in improving skills in robotic surgery. Both technical skills, where the surgeon is assessed on how well they can perform the operation and non-technical skills, which assesses how well the surgeons interact with the surgical team and work in a team will be investigated. As a result of this study, the researchers hope to find out if cognitive training can be used in teaching surgeons how to perform robotic surgery. Following on from this study will then need to determine exactly which technique for cognitive training is best (only one used in this study) and for how long and when trainees should perform cognitive training. This will allow cognitive training to be formally introduced into the surgical curriculum.

Who can participate?
Medical students and junior doctors who don’t have any experience in performing robotic surgery.

What does the study involve?
Participants are randomly allocated to one of two groups, an interventional group or a control group. All participants in both groups undergo basic robotic surgical training using a virtual reality simulator. Those in the interventional group then have cognitive training in a suturing procedure where they are taught to imagine how to perform the procedure. Participants in the control group watch a standard educational video about the procedure. All the participants then complete a suturing exercise in a mock operating room using a surgical robot. During the procedure three stressors (i.e. things that cause stress levels to rise), conversation, music and patient alarms, are also introduced to see how the participants respond.

What are the possible benefits and risks of participating?
There are no risks to participating. The benefits are training in an advanced and cutting edge surgical technique.

Where is the study run from?
Sherman Simulation Lab, King’s College London, Guy’s Hospital, London

When is study starting and how long is it expected to run for?
August 2015 to May 2016

Who is the main contact?
Dr Nicholas Raison

Contact information

Dr Nicholas Raison
Scientific

MRC Centre for Transplantation
King's College London, Guy's Hospital
Great Maze Pond
London
SE1 9RT
United Kingdom

Study information

Study designSingle centre randomised controlled trial
Primary study designInterventional
Secondary study designRandomised controlled trial
Study setting(s)Other
Study typeOther
Scientific titleRandomised controlled trial for development & evaluation of cognitive training for robot assisted surgery (RAS)
Study objectivesCognitive training improves technical and non technical skills in robotic surgery
Ethics approval(s)Biomedical Sciences, Dentistry, Medicine and Natural & Mathematical Sciences Research Ethics Subcommittee, King's College London, 13/10/2015, ref: LRS-15/16-1950
Health condition(s) or problem(s) studiedCognitive training
InterventionAll participants underwent identical initial training. This consisted of training in basic suturing training using a benchtop plastic model. Following this all participants underwent basic robotic skills training in which they completed two tasks on the DV-Trainer virtual reality simulator including a robotic suturing task. The participants were then randomly assigned to one of two groups:

1. Intervention group: Participants underwent cognition training. This consisted of mental rehearsing the steps of the procedure (robotic suturing) using a mental rehearsal script
2. Control group: Participants were shown in a video of the procedure being performed which constituted standard training
Intervention typeOther
Primary outcome measure1. Technical robotic surgical skill will be measured using the GEARS validated scoring system
2. Non technical skills will be measures using the NOTSS validated scoring system

Both scores will be determined by two blinded experts who will review and assess videos of the individual participant’s performances post hoc.
Secondary outcome measures1. Assessing vividness of mental imagery using the Mental imagery questionnaire
2. Participant opinion, evaluated using a feedback questionnaire
Overall study start date01/08/2015
Completion date01/05/2016

Eligibility

Participant type(s)Mixed
Age groupAdult
SexBoth
Target number of participants53
Total final enrolment62
Key inclusion criteriaMedical students and doctors without any prior experience in performing robotic surgery and without independent surgical experience of any kind.
Key exclusion criteria1. Non-medically trained participants
2. Participants unable to attend requisite training and evaluation sessions
3. Participants with prior training in robotic surgery or non technical surgical skills
Date of first enrolment01/08/2015
Date of final enrolment30/08/2015

Locations

Countries of recruitment

  • England
  • United Kingdom

Study participating centre

King's College London
London
SE1 9RT
United Kingdom

Sponsor information

King's College London
University/education

Division of Transplantation Immunology & Mucosal Biology
MRC Centre for Transplantation
Faculty of Life Sciences & Medicine
5th Floor Tower Wing, Guy's Hospital
London
SE1 9RT
England
United Kingdom

ROR logo "ROR" https://ror.org/0220mzb33

Funders

Funder type

Research organisation

Vattikuti Foundation

No information available

Results and Publications

Intention to publish date01/05/2017
Individual participant data (IPD) Intention to shareYes
IPD sharing plan summaryAvailable on request
Publication and dissemination planWe intend to publish the results of this trial (primary and secondary outcome measures as listed above) in a peer reviewed medical education or urology journal on completion of the trial.
IPD sharing plan

Study outputs

Output type Details Date created Date added Peer reviewed? Patient-facing?
Results article results 01/12/2018 17/07/2019 Yes No

Editorial Notes

17/07/2019: The following changes were made to the trial record:
1. Publication reference added.
2. The total final enrolment was added.
11/08/2017: Internal review.